
- -~3. S~kC--L--tT

LABRAOKYFO

AA TAMJJL IZN

NEWOK KENE

FOr LIND

Anrc S X

0tos 98

54 1N1M AI'Q .C RID ,M SA MSI S01"

A sA

SECRIY CASI -TON OTHIS PAG

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABIUTY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution

is unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-424 N00014-83-K-0125

60. NAME OF PERFORMING ORGANIZATION I6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (if epicable) Office of Naval Research/Department of Navy

Science I
6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Be. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

DARPA/DOD I
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (/Khde Security OAMfcation)

A Fault-Tolerant Network Kernel for Linda

12. PERSONAL AUTHOR(S)
Xu, Andrew S.

134. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Technical FROM TO

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GRCUP SUB-GROUP Fault-tolerant, highly-available, replication, distributed

systems, parallel computing, view change

19. ABSTRACT (Continue on reverse if necelry and identify by block number)

The parallel programming system Linda consists of a number of processes and a shared
menory called the tuple space. In a distributed implementation of Linda, processes and
the tuple space reside on different computing nodes connected by a communications network
subject to a variety of node and network failures. This thesis develops a scheme to make
the tuple space highly-available in the presence of failures.

High-availability is achieved by replication: the tuple space is replicated on several
modes so that failures usually do not disrupt program execution. Our replication method
has two parts: the operations protocol and the view change algorithm. The operations
protocol is a read-one-write-all scheme, that is, values are read from one of the replicas
and write operations are executed at all replicas. The proto.ol exploits the semantics
of the tuple space operations to eliminate unnecessary delay in program execution. When
failures occur, the replicas are reorganized and their states are updated. This process
is called a view change and is accomplished by the view change algorithm. A (continued..)

20 DISTRIBUTION IAVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
-- UNCLASSIFIEDIUNLIMITED -- SAME AS RPT. 03 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Are Code) I 22c. OFFICE SYMBOL

Judv Little. Publications Coordinator 1 (617) 253-5894 I
DD FORM 1473, 8 MAR 83 APR eiftion may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All Other editions are obsolete.
0aifi eodmmt PH"" OMM

Unclassified

19. view change guarantees that a newly formed view consists of a majority of
the replicas, and that all updates survive into the new view. Together,
the operations protocol and the view change algorithm ensure that operations
are executed in the correct order, updates to the tuple space survive failures,
and processes only see the correct tuple space state in spite of failures. In
addition, operations are performed by a concurrent background process whenever
possible.

p

A Fault-Tolerant Network Kernel for Linda

by

Andrew S. Xu

August 1988

© Massachusetts Institute of Technology 1988

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office Naval Research under contract N00014-83-
K-0125, and in part by the National Science Foundation under grant DCR-8503662.

Massachusetts Institute of Technology
Laboratory of Computer Science

Cambridge, Massachusetts 02139

88 12 6 097

A Fault-Tolerant Network Kernel for Linda

by

Andrew S. Xu

Submitted to the Department of
Electrical Engineering and Computer Science on July 20, 1988

in partial fulfillment of the requirements for the Degree of
Master of Science in Computer Science

Abstract

The parallel programming system Linda consists of a number of processes and a shared
memory called the tuple space. In a distributed implementation of Linda, processes and the
tuple space reside on different computing nodes connected by a communications network
subject to a variety of node and network failures. This thesis develops a scheme to make
the tuple space highly-available in the presence of failures.

High-availability is achieved by replication: the tuple space is replicated on several nodes
so that failures usually do not disrupt program execution. Our replication method has two
parts: the operations protocol and the view change algorithm. The operations protocol
is a read-one-write-all scheme, that is, values are read from one of the replicas and write
operations are executed at all replicas. The protocol exploits the semantics of the tuple space
operations to eliminate unnecessary delay in program execution. When failures occur, the
replicas are reorganized and their states are updated. This process is called a view change
and is accomplished by the view change algorithm. A view change guarantees that a newly
formed view consists of a majority of the replicas, and that all updates survive into the
new view. Together, the operations protocol and the view change algorithm ensure that
operations are executed in the correct order, updates to the tuple space survive failures, and
processes only see the correct tuple space state in spite of failures. In addition, operations
are performed by a concurrent background process whenever possible.

Thesis Supervisor: Barbara Liskov
Title: NEC Professor of Software Science and Engineering

Keywords: Fault-tolerant, Highly-available, Replication, Distributed systems, Parallel com-
puting, View change.

This report is a minor revision of a thesis of the same title submitted to the Department of
Electrical Engineering and Computer Science on July 20, 1988 in partial fulfillment of the
requirements for the Degree of Master of Science in Computer Science.

2

Contents

Acknowledgments 7

1 Introduction 9

2 Linda 12
2.1 Logical Tuples and Operations 12
2.2 Programming in Linda 14
2.3 Linda Kernel 14

3 Overview 17
3.1 Preliminaries 18

3.1.1 System M odel 18
3.1.2 Failure Assumptions 19
3.1.3 Partition vs. View 19

3.2 Design Goals 22
3.3 General Scheme for the Operations 23

3.3.1 Operations 24
3.3.2 Properties of the Operations 26

3.4 Constraints on Operations 27
3.4.1 Sequential Constraints 27
3.4.2 Inter-Worker Constraints 28
3.4.3 Summary 29

3.5 View Change Management 30
3.6 Correctness ... 32

4 Operations Protocol 33
4.1 Communication Among Workers and Replicas 33

4.1.1 Send and Receive 34
4.1.2 Contents of the Messages 35

4.2 Processing On a Worker 35
4.2.1 The Components of a Worker 36
4.2.2 Operations Log 37

3

4

4.2.3 Worker State 39
4.2.4 FG Processing 39
4.2.5 BG Processing 40
4.2.6 Implementing the Operations Log 44

4.3 Processing On a Replica 51
4.3.1 Timestamp-Mid Table 51
4.3.2 Tuple Space 53
4.3.3 Replica State 53
4.3.4 Executing Operations 53

4.4 Summary .. 53

5 View Change Algorithm 58
5.1 Replica State .. 59
5.2 Probes .. 60
5.3 Overview of the View Change Algorithm 62
5.4 Active Replicas .. 65
5.5 View Managers .. 66
5.6 Underlings .. 69
5.7 Examples .. 70

5.7.1 Simple Case 70
5.7.2 Concurrent View Managers 71

5.8 Correctness ... 72
5.9 Discussion .. 73

5.9.1 Crashes ... 73
5.9.2 Optimization 74

6 Discussion 76
6.1 Related Work .. 77

6.1.1 S/Net Kernel 77
6.1.2 VAX-LAN Kernel 78
6.1.3 Voting .. 79
6.1.4 Viewstamped Replication 80

6.2 Additional Linda Operations 80
6.3 Extensions of Our Scheme 82

6.3.1 Nonuniform Replication 82
6.3.2 Workers' Failures 83

References 87

List of Figures

2.1 A program segment that computes a matrix inner-product using Linda op-
erators ... 15

3.1 Workers and Replicated Tuple Space 18
3.2 An Example of Partitioning 21
3.3 Inconsistency Scenario One: Concurrent in operation extract the same tuple

from the replicas ... 22
3.4 Inconsistency Scenario Two: The same in operation extracts different tuples

from the replicas ... 23
3.5 Inter-Worker Constraints 29
3.6 View Changes. The replicas constituting the tuple space react to a possible

communication failure, such as a network partition, by changing views to
exclude the inaccessible replica r, 31

4.1 Replicas and Internals of a Worker 36
4.2 Specification for Operations Log 38
4.3 Ops Type 39
4.4 State of a Worker 39
4.5 Out, Rd, and In Procedures 40
4.6 BG Routine Part I 41
4.7 BG Routine Part II 42
4.8 Request Queue Type................................ 44
4.9 Specification for Ticket 45
4.10 Operations Log Cluster Part I 46
4.11 Operations Log Cluster Part II 47
4.12 Operations Log Cluster Part III 48
4.13 Operations Log Cluster Part IV 49
4.14 Specification for Timestamp-Mid Table 52
4.15 Specification for Tuple Space 54
4.16 Replica State (Partial) 55
4.17 Execute Operations Procedure I 56
4.18 Execute Operations Procedure II 57

5i

5 .1 R e p l i c a S t a t e (' C o m p l e t e) 6
5.1 RpiaSae(opee................................ 60
5.2 Send Probe ...
5.3 Monitor Probe 61
5.4 State Diagram for the View Change Algorithm 62
5.5 The View Change Algorithm 65
5.6 Active 665.7 View Manager 675.8 Underling .. 69

6.1 A Fault Tolerant Worker............................. 85

Acknowledgements

Every step forward in one's life journey carries fruits from years of plowing and weeding.

It is difficult to discern where gratitude begins and ends. The people who helped to guide my

current career direction and who taught me all through my life are too numerous to mention

by name. Limited space here only enables me to enumerate the few directly involved in this

thesis writing.

I am deeply indebted to my thesis advisor, Barbara Liskov. Her excellent guidance

and comments in shaping up the problem and the solution in this thesis, her indispensable

assistance in the presentation, and her emotional encouragements have not only led me

through the research, but also conditioned my way of thinking.

I am grateful to my graduate counselor William Weihl for his deep understanding and

much needed encouragement. Brian Old, Gary Leavens and Mark Day have taught me

everything from life to research. Dorothy Curtis and Paul Johnson deserve special thanks

for their help in making the simulation of my solution possible. Boaz Ben-Zvi, Toby Bloom,

Sanjay Ghemawat, Elliot Kolodner, Minoru Kubota, Deborah Hwang, Rivka Ladin, Sharon

Perl, Radia Perlman, Mark Vandevoorde, Cathy Yelick and all the people mentioned above

have made my experience at MIT inspirational and memorable.

David Gelernter, Nicholas Carriero, and Jerrold Leichter earn special thanks for their

help in clarifying my questions and their boost to get me interested in the thesis topic.

Thanks to my dearest friends Joseph Dauben, Kenneth Manning, Pamela McCorduck,

Joseph Traub, Hortense Calisher, Curtis Harneck, Wai-Mee Ching and Mark Gilpin for the

invaluable friendship and affection.

7

8

Fially, my deepest gratitude to all members of the extended family: motheim

Togethei, we have shared the worst

political turbulence imaginable as well as the happiest moments in my life. Split over three

continents, we have never been closer before. I couldn't wish for a family that I would love

mote.

Chapter 1

Introduction

In the parallel programming system Linda (41 (131, processes (called workers in this thess)

are uncoupled in time and space: they store and pick up logical tuples, units of data in Linda,

in a shared-memory-like data structure referred to as the tuple space. A typical Linda system

consists of several workers and a tuple space. The tuple space is directly accessible to all

the workers simultaneously. The workers read their data from, and deposit the results into,

the tuple space. Computations can start as soon as all the data needed are available. Linda

has been implemented on Encore and Sequent shared-memory multiprocessors, the S/Net

bus-based message-passing network, the Intel iPSC hypercube link-based network, and the

Ethernet-based multi-computer local area network [41t7][3].

This thesis develops a mechanism to make the implementation of Linda on a distributed

system possible. A distributed system is a collection of geographically distributed computing

nodes connected to a communications network. A communications network might be a local

area net, or it might consist of a number of local area nets connected by a long haul net.

Some of the potential benefits of a distributed parallel processing system are the follow-

ing:

" The existing uni-processor, probably heterogeneous, computers can be used to process

large jobs in parallel instead of acquiring expensive new multi-processor machines.

" The placement of computers is not geographically restricted. Numerous computers

from different geographic locations can work together on a single job. For instance,

computers scattered in various buildings and fluors can cooperate on tasks requiring

larger computing power than any single one of them can handle.

9

10

a With a proper fault-tolerant mechanism, failures of individual computing nodes, pos-

sibly caused by loss of power or hardware mulfunction, will not disrupt program

execution.

Distributed parallel processing systems, while providing the above benefits, also give rise

to some potential problems. In addition to higher communication overhead than that of

multi-processor systems where inter-processor communication is commonly done via fast

speed data buses, networks are susceptible to failures: messages may be lost or duplicated,

the network may fail (and thus disrupt normal communication or cause systems to be

partitioned into subgroups that cannot communicate), or computing nodes may crash. It is

important to have programs continue to run correctly in the presence of network and node

failures.

This thesis addresses the problems that arise from the system failures in a distributed

implementation of the Linda tuple space and presents an efficient protocol that makes

the tuple space fault-tolerant, and thus highly-available. High availability is achieved by

redundancy- a tuple space is replicated onto several, usually geographically distinct, nodes

so that some of the replicas are able to provide information when the others become inac-

cessible due to failures.

Replication provides high availability of data, but may cause data inconsistency among

replicas. Failure to deliver messages or network partitions cause some replicas not to receive

needed information; duplicate messages may cause some replicas to receive extra informa-

tion; a replica may have kept out-dated information after the recovery from its failures. The

protocol presented in this thesis solves these problems.

The protocol consists of two parts: the operations protocol and the view change algo-

rithm. The operations protocol guarantees the correct execution of the operations on a

replicated tuple space. The view change management algorithm guarantees that the tuple

space replicas contain an up-to-date and consistent state, and that effects of all completed

operations survive subsequent failures.

Our protocol provides some attractive properties. First, the replication is completely

11

hidden from the user program, that is, the replicated tuple space appears to the workers as

a single entity. Second, the tuple space can tolerate simultaneous failures, and progress can

be made as long as a majority of the replicas can still talk to one another. Third, very little

delay is imposed on the user programs. These properties make a distributed implementation

of Linda a viable alternative to an implementation on a multi-processor machine.

Two of the current Linda implementations were designed for networks. But neither of

them provi , ! highly-available tuple spaces in a general communications networks. Com-

pared with these implementations, our protocol tolerates failures that are common in general

networks and provides good performance.

The thesis makes three contributions:

1. It provides a fault-tolerant, efficient, distributed implementation for Linda.

2. It indicates how fault tolerance might be achieved for other parallel systems. Many
parallel computations are long lived; fault-tolerance is especially interesting for them.
In addition, the other advantages of distribution apply to any parallel system.

3. It extends the work on replication techniques by showing what can be done when
the semantics of the operations (that is, the tuple space operations) are taken into
account.

The remainder of the thesis is organized as follows. Chapter 2 introduces Linda. Chapter

3 gives an overview of our scheme, and outlines the two parts of the scheme: the operations

protocol and the view change management. The detailed descriptions of these two parts are

given in chapters 4 and 5, respectively. Chapter 6 discusses related research and extensions

of our work.

Chapter 2

Linda

A Linda system consists of several processes, which we will refer to as workers, and a memory

that is logically shared by the workers. The workers cooperate on jobs, communicating

through the logically shared memory. A worker with data stores the data into the memory

and one that needs to receive data retrieves them from the memory. There is no centralized

synchronization among the workers other than the operations on the memory. Operations

are executed as soon as the data needed are available.

This chapter describes the Linda data structure and its operations, uses a simple example

to explain how a Linda program runs, and introduces the notion of a Linda kernel. More

detailed descriptions of Linda can be found in [13] and [9].

2.1 Logical Tuples and Operations

The basic data unit in Linda is a logical tuple, or tuple for short. A tuple contains a logical

name followed by one or more ordered data elements, which can be either data values such

as "1", "true", and "John", or formals, which are typed variables that can be assigned some

data value. For instance, ("X", 1, true), ("done") and ("A", "John", formal score) are

valid tuples. "X" is the logical name, and "1", "true" are the data values of the first tuple.

"done" is the logical name of the second tuple. In the third tuple, "A" is the logical name,

"John" is a data value while "formal score" indicates that "score", a previously declared

variable, is a formal.

The term template is used to refer to tuples that are the arguments of two of the Linda

operations (see below). A template and a tuple may match using the following rules:

12

13

1. both must have the same logical names and the same number of fields,

2. corresponding fields must be type consonant,

3. corresponding data items must be equal, and

4. there must be no corresponding formals.

For example:

* ("X", 1, 2, 3, 4, 5) matches ("X", 1, 2, 3, 4, 5),

* ("X", formal i, 3, 4, 5) matches ("X", 2, 3, formal j, 5),

9 ("X", 1, true) matches ("X", formal i, formal b),

* ("X", formal i, true) matches ("X", 1, true), and

a ("X", formal i, true) matches ("X", 1, formal b)

where i and j are previously declared as integer variables and b is a variable of boolean type.

On the other hand,

* ("X", 1) does not match ("X", 1, true) because of rule (1),

e ("X", "abc") does not match ("X", 1) because of rule (2),

* ("X", 1) does not match ("X", 2) because of rule (3), and

e ("X", formal i) does not match ("X", formal j) because of rule (4).

Tuples are stored in a logically shared memory called a tuple space. Workers interact

with tuples in a tuple space via three basic operations: out, in, and rd. An out operation

takes a tuple as its argument, and an in or a rd operation takes a template as its argument.

Let t be a tuple, and s be a template. Out(t) causes tuple t to be added to the tuple space;

the executing worker continues immediately. In(s) causes some tuple t that matches s to be

withdrawn from the tuple space; the values of the actuals in t are assigned to the formals

in s, and the executing worker continues. If no matching t is available when in(s) executes,

14

the executing worker suspends until one is, and then proceeds as before. If many matching

t's are available, one is chosen arbitrarily. Rd(a) is the same as in(s), with actuals assigned

to formals as before, except that the matching tuple remains in the tuple space.

In addition to the above three operations, [9] also lists three other operations: eval(p),

inp(s), and rdp(s). Eval(p) starts a process to execute the procedure p. It has little to

do with the tuple space, and hence will be ignored in the thesis. Inp(s) and rdp(s) are

similar to in(s) and rd(s), respectively, except inp(s) and rdp(s) are non-blocking: the

executing workers do not block if there is no matching tuple in the tuple space. If there is

a matching tuple to a, then inp(s) and rdp(e) will behave exactly the same as in(s) and

rd(a), respectively. Otherwise, "no.matchJound" is signalled. Inp(s) and rdp(s) will not

be included in our protocol. We will discuss these two operations in chapter 6.

2.2 Programming in Linda

The Linda operators can be incorporated into a high-level language, transforming the

language into a parallel programming language. A simple program that computes the inner-

product of two matrices A and B is shown in Figure 2.1. It illustrates the use of these

operators. The initialization creates several workers, stores A's rows and B's columns in the

tuple space, and adds the tuple ("Next", 1), where 1 is the next element to be computed, to

the tuple space. A worker first gets the next task by doing in("Next", formal NextElem).

Then it reads A's row and B's column from the tuple space. The result is put back to the

tuple space by out("result", DotProduct(row,col)). These results can then be used by some

other computation.

2.3 Linda Kernel

A Linda kernel serves as a translator between Linda operations and the accesses to physical

memories. It supplies a form of logically-shared memory without assuming any physically-

shared memory in the underlying hardware.

A Linda kernel implemented on a network is called a network kernel. The only existing

kernel implementations that approximate a network kernel are the S/Net kernel and the

Initialization
eval(workero) % create one worker
eval(workero) % create another worker

...... % create some more workers
out(-A", 1, A's-Ist-row) % put A's Ist -row into the tuple space
out('A", 2, A's-2nd-row) % put A's 2nd row into the tuple space

%more of A's rows into the tuple, space
out("A", n, A's-nth-row) % put A's nth row into the tuple space
out("B", 1, B's-lst-col) % put B's 1st column into the tuple space
out("B", 2, B's-2nd-col) % put B's 2nd column into the tuple space

%more of B's columns into the tuple space
out("B", n, B's-nth-col) % put B's nth column into the tuple space
out("Next", 1) % next computation

Worker in("Next", formal NextElem) % get next computation

if NextElem = -1 then out("Next", -1) done exit end
if NextElem < n * n then out("Next", NextElem + 1) else out("Next", -1) end
i= quotient-.of((NextElem - 1)/dim + 1) % calculate the row of the result

j = remainder..of((NextElem - 1)/dim + 1)% calculate the column of the result
rd("A", i, formal row) % get A's row from the tuple space
rd("B", j, formal col) % get B's column form the tuple space
out("result", i, j, DotProduct(row, col)) % put the result into the tuple space

Figure 2. 1: A program segment that computes a matrix inner-product using Linda operators

16

VAX-LAN kernel described in [4][7]. But neither kernel provides a highly-available tuple

space in the face of failures. (We will discuss these two kernels in chapter 6.) The inability of

the existing mechanisms to cope with network failures motivates the design of a new scheme

for a network kernel that makes the tuple space continue to be available and uncorrupted

in the face of failures such as node crashes and network partitions. Our scheme provides

highly-available tuple space without sacrificing performance.

Chapter 3

Overview

Replication is the standard technique to increase data availability. By replication, we mean

maintaining several physical copies, usually distributed over a set of nodes at distinct loca-

tions, of each logical tuple. When one or more copies of a logical tuple becomes unavailable

due to node or network failures, the rest of the copies can still provide information. For

simplicity, we assume that the tuple space is uniformly replicated, that is, each replica con-

tains an entire copy of the tuple space. In chapter 6, we will see that this constraint can be

relaxed so that each tuple can be stored on a subset of the replicas.

Replication solves the availability problem, but gives rise to the others that do not

exist in a single-copy tuple space scheme. These problems include inconsistencies caused

by delayed or lost messages, or out-dated replicas on nodes that recover from failures. Our

scheme is designed to solve these problems.

The scheme consists of two parts: the operations protocol and the view change algo-

rithm. The operations protocol translates each logical operation into physical operations.

For example, an in(s) operation issued on a worker is translated into several physical in(s)

operations performed on all the replicas. The view change algorithm is adopted from the

virtual partitions protocol described in [11 and [2]. It guarantees the integrity of the acces-

sible part of a tuple space during topological changes of the system. The term view will

become understood as the chapter progresses.

This chapter gives an overview of our scheme. It starts by discussing the system model,

the failure assumptions, and the definitions of partitions and views. Then it lists the goals we

would like to achieve. Next we give an overview of our implementation of Linda operations,

17

18

Tuple Spame

Figure 3.1: Workers and Replicated Tuple Space

and explain why the scheme works. An analysis of a set of constraints on the operations on

a replicated tuple space follows. An overview of the view change algorithm is then given.

Both the operations protocol and the view change algorithm will be discussed in detail in

the next two chapters. Finally, we discuss the correctness conditions for our scheme.

3.1 Preliminaries

3.1.1 System Model

Our system consists of a set of tuple space replicas and a set of workers as illustrated in

Figure 3.1. Squares rl, r2, r3, ... are tuple space replicas; circles WI, W9, W3, ... represent

workers. Each tuple space replica or worker resides on some physical node. A physical node

can contain any number of replicas or any number of workers or both. All physical nodes

are connected by a communications network subject to a variety of failures as discussed

below.

Each replica is identified by its unique replica id. The replica ids are totally ordered.

That is, if rl-id and r 2.id are replica ids of two replicas rl and r 2 , then there is a relation -.<

such that either rl-id -< r2-id or r2 .id - rl-id but not both. -< is transitive: if rl-id -< r 2 _id

19

and r2 _id -. r3 .jd, then r1 _id -4 r3.id.

3.1.2 Failure Assumptions

Failures can occur in many ways: node crashes, lost and duplicated messages, and even

Byzantine failures [18], where system components may act in arbitrary, even malicious, ways.

We will consider failures that have a reasonable chance of occurring in practical systems and

that can be handled by algorithms of moderate complexity and cost. The failures satisfying

these criteria include node and network crashes, lost or duplicate messages, message delays,

and network partitions [11[10]. Byzantine failures are excluded. We assume that the nodes

are failstop [24], that is, they fail by halting. Node and network crashes, lost messages, and

delayed messages, cause messages not to be received by the receiver within a reasonable

time interval. Duplicate messages cause certain messages to be received more than once.

Network partitions divide a system into several subgroups where communication is possible

within each subgroup, but impossible between any pair of the subgroups.

In general, it is impossible for a node to tell whether a failure to receive a message is

due to a node crash or a network partition. This is because the effect of the failures, as a

node perceives it, is the same - no message is received. Whether any message was ever

sent, or was sent but not delivered, cannot be determined by an individual node. Thus, our

scheme will not rely on distinguishing crashes from partitions.

3.1.3 Partition vs. View

A partition of a tuple space is a subset of replicas that can communicate with each other.

We assume that the can-communicate relation between any two nodes is transitive and

commutative. That is, if replica a can communicate with replica b, and replica b can

communicate with replica c, then b can communicate with a, c can communicate with b, a

can communicate with c, and c can communicate with a. Thus, every replica in a partition

can communicate with every other replica in the same partition.

Partitions evolve dynamically. Initially, there is one partition containing all the tuple

space replicas. The initial partition may be divided into several smaller partitions. The

20

smaller partitions may then merge to form larger partitions, or further subdivide into even

smaller partitions. Figure 3.2 shows an example of the partition evolution process. The

initial partition (rI, r2, r3, r4, r5) becomes two partitions (rI, r2) and (r 3, r4, r5) after

some failure at time tI. In this partition situation, r, and r2 can communicate with each

other and r3, r4 and r5 can communicate with each other, but none of the replicas in the

first partition can communicate with any of the replicas in the second partition. At some

time t2, two new partitions, (ri, r 2, "3) and (r4, r5), are formed. Again, communication is

possible among the replicas in the first partition and among those in the second partition,

but there is no possible communication between a replica in the first partition and a replica

in the second partition.

The view of a worker w is defined to be a set of replicas that w thinks that it can access.

A view of a replica r is defined to be a set of replicas that r thinks that it can access 1. A

view always contains a majority of replicas in the system (to be explained in Chapter 5).

Worker and replica views can change over time. Replicas can initiate a view change

algorithm when they think that there is a change in the network topology. The view change

algorithm will be explained in more detail later. For now, it suffices to know that as the

result of a view change, a new view may be established and the replicas in the new view

will agree on a common view.

Associated with each view is an unique viewid. A viewid contains a sequence number n

and the replica id, rid, of the replica that initiated the view. That is:

viewid = record[n: int,r.id: replica-id]

Viewids are totally ordered by the relation <:

id, < id2 - (idl.n < id2 .n) V ((idi.n = id2 .n)&(id.r-id -< id2 .rid))

where id, and id2 are viewids, idL.n and id2 .n are sequence numbers of id, and id2 , respec-

tively, and idl.r.id and id2 .r.id are replica ids of the replicas that initiated id, and id2,

respectively.

'Views are referred to a wrhul par tia in [1).

21

Initial Partition

ED ate]

Partitions at time t I

Partitions at time t 2 in

Figure 3.2: An Example of Partitioning

22

in('x", formal i) in(-x", formal i)

0 G
Figure 3.3: Inconsistency Scenario One: Concurrent in operation extract the same tuple
from the replicas.

It is important to realize that views and partitions are different concepts. Partitions

represent the physical configurations of a system while views are what workers and replicas

think the system configurations are. For instance, if rl, "2, r3, r4 and rs are replicas of

some tuple space, and at some instance there are two partitions (rl, r4, r5) and (r2, r3),

then the views of rl, r4, and rs may be {r, r4, rs}, and those of r2 and r3 may be {rl,

r2, r3). The inconsistencies between views and partitions result for many reasons. One

possibility is that changes in network topology happen abruptly and replicas and workers

cannot detect the changes instantly. Another possibility is that lost messages may change

workers' and replicas' views of the "world" even when no physical change takes place.

3.2 Design Goals

The design of our network Linda kernel is driven by the following set of high-level goals:

e Availability - The tuple space should have a high probability of being available

despite failures. Our goal is that as long as the majority of replicas (for example,

3 out of 5 or 251 out of 500) can communicate with each other, the tuple space is

available.

* Consistency - The replicated tuple space ought to present a consistent state to

the workers. The user programs should not be aware of whether the tuple space

is replicated or not, except for the higher availability of a replicated tuple space.

23

r 1 ("x", 1)

in(x", formal i)

Figure 3.4: Inconsistency Scenario Two: The same in operation extracts different tuples
from the replicas.

Therefore, multiple copies of the tuple space should not cause any anomalies for out,

in, and rd operations. The result of these operations must be the same as if there were

only one copy of tuple space available. For instance, concurrent in operations must

not extract the same tuple from different replicas (Figure 3.3 illustrates an anomaly

where the same tuple, ("x", 1), on r, and r 2 is extracted by concurrent in operations

on w, and w2), and the same in should not delete different tuples from different

replicas (the problem can be seen in Figure 3.4 where two different tuples on r, and

r 2 are extracted by the same in operation on w1).

9 Efficiency - Operations should perform efficiently to support requirements of the

parallel programming paradigm. Except for satisfying a set of semantic constraints

(as will be discussed below), no delays should be imposed on the user programs.

Having enumerated the goals, we are ready to give an overview of how operations are

performed in a network Linda kernel.

3.3 General Scheme for the Operations

The principal idea behind our network kernel is to use an operations protocol in conjunction

with the view change algorithm. This section gives the reader an overview of how Linda

operations are implemented on a replicated tuple space. We assume that workers do not

24

fail; we discuss a method to cope with workers' failures in Section 6.3.2.

In this thesis, we assume that a tuple space is implemented as a set of tuple sets. Each

tuple set contains all the tuples with the same logical name. There is a lock associated with

each tuple set. 2 When a tuple set is locked by a worker, further in operations of all other

workers involving that tuple set are blocked until the lock is released by the locking worker.

To simplify the presentation, we do not concern ourselves with view changes in this

section. The assumption is that workers' views are accurate and no event occurs that

would invalidate them. This assumption allows us to understand the operations without

getting involved in the details of the view change.

3.3.1 Operations

Let w be a worker executing the operation. The three operations on a replicated tuple space

are implemented as follows:

" Out(t) - The request to execute the operation is broadcast to all the replicas in to's

view, and w waits for acknowledgments from the replicas.

At each replica, t is stored into the local copy of the tuple space, and an acknowledg-

ment is sent to w.

If w does not receive acknowledgments from all the replicas in its view, it repeats the

request until all the acknowledgments have been received. It is replicas' responsibility

to discard redundant requests for the same out.

" In(s) - This is done in two phases:

- Phase One (inl) - W sends template s to all the replicas in its view.

Each replica searches its local copy of the tuple space for matching tuples. The

tuple set for tuples with s's logical name is locked, and a set containing all

matching tuples is returned to to. If there is no matching tuple, an empty set
2We could use a finer grain of locking in which we lock just the tuples that might match the template;

such locks are known as predicate locks [11].

25

is returned. If the tuple set is already locked by another worker, t's request is

refused.

If all the replicas in the view respond, none of the replies is a refusal, and there

is a non-empty intersection of all the tuple sets wv received, then an arbitrary

tuple in the intersection is selected, the actuals of the selected tuple are assigned

to the formals of s, and phase two starts.

If all the replicas in the view have not responded within a reasonable time or if

all replicas responded and the intersection is empty, phase one is repeated after

a timed delay.

If a majority of the replicas in tw's view refused tw's request, then w instructs the

replicas to release the locks, and phase one will be repeated after some random

time interval.

If a minority of the replicas refused, then t repeats the first phase until it gets

locks on all the replicas in its view.

- Phase Two (in2) - W informs all the replicas in the view about the selection in

phase one. The replicas remove the selected tuple from their copies of the tuple

space, release the locks set during the first phase, and send an acknowledgment

to w. An in2 is finished only when all the replicas have replied. Otherwise,

it is repeated until they have. Again, repeated requests for the same in2 are

discarded by the replicas.

It would be a violation of our consistency goal for an in to delete a different

matching tuple from each replica. Instead, the same tuple must be removed by

all the replicas in the view. inl's mission is to ensure that this constraint is

met. A selection can be made only when the executing worker has a lock on the

same tuple at every replica in its view; a non-empty intersection guarantees this

condition. No selection can be made if the intersection is empty; the worker must

be blocked until all the replicas have replied to the in1 request and a selection

is made.

26

The locks keep the tuples under consideration from being removed by other

concurrent in operations. If there are concurrent inis concerning the same tuple

set, each might acquire locks at some replicas, and neither would be able to

complete. In other words, there would be a deadlock. To resolve such a situation,

we release locks when the worker has acquired them only at a minority of replicas;

this will enable a worker with a majority to succeed in acquiring locks at all

replicas. The case of several competing workers who repeatedly acquire only a

minority of locks can be avoided by introducing a random delay, so that workers

make their next attempts to set the lock at different times.

9 Rd(a) - Template 8 is broadcast to all the replicas in w's view. Each replica searches

for a matching tuple in its local copy of the tuple space. If a matching tuple is found,

a copy of it is sent back to w. Otherwise, it informs w that no matching tuple is

found.

Whenever w receives a tuple from any of the replicas, it assigns the actuals of the

returned value to the formals of 8, and the execution continues. Responses from the

rest of the replicas are ignored.

If no tuple is received within a reasonable delay, the rd is repeated until one is.

Notice that a modification operation (out or in) is complete only after it has occurred

at all replicas, and that a worker continues to perform the operation at all replicas in its

current view until it knows the operation is complete.

3.3.2 Properties of the Operations

From the basic operations scheme stated above, we can see that an out(t) operation does

not concern itself with the current tuple space state. It simply deposits t into the tuple

space. It is analogous to a blind write, a write operation that does not read the value of the

written object first. Therefore, there is no need for a worker issuing an out operation to

wait until the operation is finished. The execution of an out operation can be carried out

in the background while program execution continues.

27

There is no need for the executing worker to be blocked while an in2 is in process

because the in2 will not provide any information that is needed by the worker. Thus in2's

can be completed in the background. Completing an in2 guarantees that the selected tuple

is removed from all the replicas in the view and the locks set by the corresponding inl's

are released.

It is not hard to see that the worker executing a rd operation must be blocked until

the first matching tuple is returned from a replica. Similarly, a worker executing an in

operation must be blocked until the tuple to be removed is selected.

The background processing of out and in2 allows multiple operations to be packaged

in one message. It also introduces concurrency between running a worker and its use of the

tuple space. However, the executions of the background operations need to satisfy a set of

constraints that ensure the Linda semantics are preserved in the face of concurrency. For

example, if we do not control concurrent execution, a rd operation may read a tuple that

was supposed to be removed by a previous in operation issued by the same worker because

the background in2 has not completed by the time the rd is executed.

3.4 Constraints on Operations

To determine how much concurrency we can achieve without violating correctness, we need

to define constraints on each operation. A plausible requirement is that the state of the

tuple space observed by each worker does not conflict with what it has done or observed in

the past3 We let this requirement be our correctness criterion. We will first take a look at

the sequential constraints, the constraints on the operations of a single worker, and then

the inter-worker constraints, those imposed on the operations of different workers.

3.4.1 Sequential Constraints

This subsection investigates the constraints in an environment that has one worker and a

possibly replicated tuple space. Out and in2 are executed in the background concurrently.

Concurrent out's will not cause problems. This is because both rd and in are nondeter-
3This requirement in known as one-copy serializability [6].

28

ministic and blocking. Rd(s) can use any matching tuple in the tuple space at the moment.

If an out(t) was issued by the worker previously and t matches s, rd(s) may use t (if t is

already in the tuple space), or it will simply wait (if t has not yet been stored into the tuple

space and there is no other matching tuples in the tuple space) until t arrives. Similarly,

ini(s) can lock any matching tuple in the tuple space at the moment. It will wait for a

matching tuple to arrive (at all replicas) if there is not one already. Since rd is blocking,

no later out's may start until the current rd operation has returned. Similarly, in's will

block later out operations until in1 has returned.

Unfinished in2's may cause problems in that the tuple that was supposed to be removed

by an in operation may still be in the tuple space when a later rd is executed. (A later in

is not a problem because the locks will prevent it from seeing the effects of the earlier in2 if

both concern the same tuple set.) This is undesirable. To prevent this problem, we require

that the operations be executed at each replica in the same order as they were issued by the

worker. This requirement ensures that no rd can be executed at a replica before a previous

in2 is completed at that replica.

3.4.2 Inter-Worker Constraints

The inter-worker constraints are more subtle than those on a single worker because different

workers run in parallel.

For example, Figure 3.5 illustrates the kind of problem that can arise. It shows a scenario

where there are two workers and a replicated tuple space. There is at most one tuple ("x",

*), where * is an integer, in the tuple space at any time. The tuple space contains tuple

("x", 1) initially. Workers wl and w2 are the only workers in the system, and are running

in parallel. X, u, and v are previously declared integer variables in the workers' programs.

In this example, the integer value associated with tuples with logical name "x" increases

with time. In the figure, w1 modifies z in a way that satisfies this constraint; w2 reads z

and should not observe a violation of the constraint.

Forcing operations to be executed in order at each replica is not sufficient to enforce

the above constraint because rd can return a value from any replica. To illustrate this,

29

(("x",1)Tuiple Space Initial State

IWl tO 2

in(x", formal z) rd("ex, formal u)
out("x", z + 1) rd("x", formal v) % expeci v > v
...... o

Figure 3.5: Inter-Worker Constraints

we use the same scenario above. Suppose the tuple space is replicated on r, and r2, and

both contain ("x", 1) at some point in time. Operations at w, and W2 occur as follows:

wl's in("x", formal z) and out("x", z + 1) are executed at rl, w2 's rd("x", formal u) is

executed at r, and returns ("x", 2), and finally, w2's rd("x", formal v) is executed at r 2

and returns ("x", 1), which is incorrect.

To remedy the problem above, we require that requests for an out operation not be sent

to any replica until the previous in operations issued by the same worker are completed

at all replicas in the current view. Thus, the tuple ("x", 2) cannot exist at r 2 until ("x",

1) has been removed from both r, and r 2 in the above example. So when rd("x", formal

u) returns with ("x", 2) (from any replica), ("x", 1) has already been removed from every

replica.

3.4.3 Summary

The sequential and inter-worker constraints are summarized as follows:

1. The operations must be executed at each replica in the same order as they were issued;

2. An out operation must not start until all previous in operations issued on the same

worker are completed at all replicas in the worker's view.

30

The secon d constraint is translated into "an out operation must not start until all previous

in2's issued on the same worker are completed at all replicas in the worker's view." The

second constraint may cause a delay in the execution of the worker. The worker needs to

wait for an out operation, but may be delayed by a subsequent rd or in. We expect that

often there will be no delay, however, because previous ins will be completed by the time

the rd or in is issued.

3.5 View Change Management

The failures mentioned in subsection 3.1.2 affect the replicas making up the tuple space.

To mask these failures automatically and efficiently, and to preserve the single-image ap-

pearance of the tuple space, views were introduced.

Intuitively, a view reflects the changing communication capability among members of

a partition. When the communication capability inherent in a view is believed to have

changed, the replicas switch to a new view by executing the view change algorithm; our

algorithm is a variation of the original virtual partitions protocol proposed by El Abbadi,

Skeen, and Cristian [1]. As part of a view change, the view change algorithm generates a

new viewid and a new view. The viewid of the new view is guaranteed to be greater than

the viewid of any earlier view.

In Figure 3.6, we illustrate what the view change algorithm achieves. The original

configuration of the tuple space is {r, r2, r3, r4, rs), and the initial view of these replicas

is {fr, r2, r3, r4, r5) with viewid < 2,ri >. Now suppose a communication failure makes

it impossible for replica r, to talk to the others. When this failure is noticed, the system

initiates a change in view. As a result of the view change, a new view {r2, r3, 4, r5), is

formed with viewid < 2, r5 >.

A new view can be formed only when it contains a majority of the replicas in the

original configuration. If this is impossible, the replicas remain in their old views. Thus, if

a modification operation (inl, in2, or out) is completed at all the replicas in a view, this

implies that at least a majority of the replicas know the effect of the operation. (Recall

that a modification operation is complete only when it has occurred at all replicas in the

31

rMr

Figure 3.6: View Changes. The replicas constituting the tuple space react to a possi-ble communication failure, such as a network partition, by changing views to exclude theinaccessible replica rl.

32

worker's current view.)

As part of a view change, the algorithm selects an initial state for the new view; all

replicas in the new view will be initialized with this state. The chosen state is the state of

the replica in the new view whose previous viewid is greater than or equal to the previous

viewids of all other replicas in the new view. As discussed below, this guarantees that effects

of completed operations will persist into all later views.

3.6 Correctness

The correctness of our algorithm depends on the interaction of operation processing and

the view change algorithm. In this section, we discuss the conditions that must be met for

correct operation.

1. The operations appear to happen in the correct order.

This condition is guaranteed by the two constraints summarized in subsection 3.4.3:

the operations are executed at each replica in the order they are issued, and all in

operations for a particular worker must be completed at all replicas in the current

view before an out operation for that worker starts.

2. Completed modification operations occur at all replicas in some view.

This is guaranteed by the operations protocol. Both in and out operations are com-

pleted only when their effects occur at all the replicas in the executing worker's view.

3. The effects of completed operations survive into all subsequent views.

This is guaranteed by the view change algorithm. If the previous view contained a

majority of replicas, and the new view also consists of a majority, then both views

must have at least one replica in common that was in the previous view and is now in

the new view. The state of the new view is taken from such a replica. Therefore, the

new view starts out knowirg what happened in the previoua view. Since the effects of

completed operations are known at all replicas in the old view, the effects of completed

operations survive into all subsequent views.

Chapter 4

Operations Protocol

The execution of the operations protocol requires the cooperation of both the workers and

the replicas. When a tuple space operation out, rd, or in is encountered by a worker, a

request for the operation is formed at the worker. Periodically, the requests are sent to

each replica in the worker's view, and are executed by the replica. After the execution, the

replica sends back either a result (if there is one) or a completion acknowledgment.

The messages that contain the requests or answers can be lost, delayed, or duplicated

by the network. When a worker does not receive all the replies within an expected time

interval, it repeatedly sends the requests until it gets the replies back from all the replicas

in its view. This method solves the problems of lost and delayed messages, but not of

duplicate messages (in fact, it generates duplicate messages). A remedy to this problem is

included in the operations protocol.

The next section discusses the means of communication among workers and replicas.

Section 4.2 explains a worker's participation in the operations protocol. The related activ-

ities on a replica are described in section 4.3. The operations protocol is summarized in

section 4.4.

4.1 Communication Among Workers and Replicas

Communication is accomplished by sending and receiving messages using the send and

receive statements. This section describes these statements, and the contents of messages

exchanged between workers and replicas.

33

34

4.1.1 Send and Receive

The form of a send statement is

send(message-type, parm-ist) to destination

where message-type is a string indicating the type of message sent, parmJist is a list of

parameters containing the information to be sent, and destination is the id of the receiver,

either a replica or a worker, of the message. As an example,

send("abc", myid) to rid

will send an message of type "abc" to the replica r-id. The parameter is my-id.

Messages are received using the receive statement. An example is the following:

receive
foo(x: int): S
bar(a: char, b: string): S2

end.

If a message with a name matching one of those listed in an arm is waiting for the process

executing the receive, it is selected and control continues at the statement in the matched

arm. If there are several matching messages, one is selected nondeterministically. If there

are no matching messages, the process waits until one arrives.

A second form of the receive statement allows the process to wait until a timeout

expires. For example,

receive until t
foo(x: int): Si
bar(a- char, b: string): S2

end except when timeout: ... end.

Ift = 0, this statment is identical to that above. Otherwise, the process waits for a matching

message only so long as the time of the clock at its node is less than or equal to t; when

its local time is greater than t, the statement terminates immediately with the timeout

exception.

35

4.1.2 Contents of the Messages

This subsection describes the contents of the messages transmitted between workers and

replicas.

A message from a worker to a replica is typically a request to execute a list of tuple

space operations. In addition to the information needed to execute these operations, the

parameters in such a message contain the worker's current viewid and the unique message's

unique id, the mid.

The viewid in the message is compared at the receiving replica with the replica's viewid.

If the worker and the replica have the same viewid, the requests are executed at the replica.

Otherwise, if the replica has a more recent view, the worker is informed about the new

view, and no operations are executed. If the replica has an old view, the worker's message

is ignored.

The mid is used to weed out the duplicates and outdated replies. It is generated by

the worker each time a message is sent. When a replica receives a message with an mid

already seen before, the message is a duplicate, and is ignored. When a worker's request

is completed, the replica sends back the result along with the mid received in the request.

The mid received at the worker's side can be used to decide whether the reply is for the

request just sent. Outdated replies (the replies with old mids) are weeded out.

4.2 Processing On a Worker

The last chapter explained that out and in2 (the second phase of in) operations can be

non-blocking - the program process does not have to wait until the results of the operations

come back. In other words, the processing of out and in2 operations can be done by some

background process. This section introduces the notion of the foreground and background

processes. Each worker contains a foreground process and a background process. The two

processes communicate via a shared data structure called the operations log. The subsequent

subsections explain the function of these components.

36

Worker A

Request Queue R,

0 o
Ou R2

FG / 2 R3

ra

Figure 4.1: Replicas and Internals of a Worker

4.2.1 The Components of a Worker

Figure 4.1 illustrates the internals of a worker A and its relationship with the replicas (for

example, R1, R2, and R3). There are three major components of a worker: a foreground

process (FG), a background process (BG), and an operations log that includes a request

queue.

FG and BG communicate through the operations log. FG executes the program in-

cluding its accesses of the tuple space. It stores requests in the operations log. BG retrieves

requests from the log, communicates with the replicas to carry them out, and stores results

in the log. The requests for the operations that do not have results (out and in2) are

removed from the operations log by BG after they are finished. When a result is expected

(as in rd, inl, or unlock), BG updates the request entry on the operations log with the

37

result after the replies from the replicas are received. The result is picked up and the entry

is removed by FG before it continues its execution.

4.2.2 Operations Log

The operations log of each worker synchronizes both FG and BG, and records the re-

quests and answers. FG and BG can add, remove and update the requests on the operations

log by calling one of the operations provided by ops Jog, the operations-log data type shown

in Figure 4.2. The internal representation of an opsiog is completely hidden from FG and

BG.

The log contains five kinds of requests: rd, out, in1, unlock, and in2. The latter

three requests are used to carry out an in operation: in1 does phase one, unlock releases

locks when this is necessary, and in2 requests are used to do phase two. At any time, the

log contains the most recent request, possibly preceded by some requests that are executed

in the background (out and in2). Requests are processed when they are ready. An out

request is ready provided all earlier in2s are completed; other requests are ready if all earlier

out requests are ready.

An operations log can be created by means of the new operation. FG calls out, rd, and

in to add out, rd, or inl requests, respectively. The remaining operations are called by

BG. The result of a rd request or an iul request can be delivered using rd.ans or inlans.

The out request does not have a result. The completed requests can be removed from the

operations log via the finished operation. A list of outstanding requests in the operations

log can be obtained by calling get-ops.

GeLops returns a list of ready operation requests; the list contains the requests in order.

Figure 4.3 shows the format of these requests. Rdop contains the template. OuLop contains

t (the tuple to be stored in the tuple space) and t.stamp (the timestamp of the operation, to

be explained later). In iop contains the template, and in2 contains the template s (whose

matching tuples in the tuple space need be unlocked), t (the tuple to be deleted from the

tuple space), and t.tamp (the timestamp of the operation). Finally, unlock-op contains the

template whose matching tuples are to be unlocked.

38

opslog = abstract data type providing operations new, rd, rd.ans, out,
in, inlans, finished, get-ops

% OpsaJog is a queue where requests for rd, out, and in are added to the
% top, and the finished requests are removed from the bottom or the top.

new = proc(returns(opslog)
Return a new, empty operations log.

get.ops = proc(ol: ops-log) returns(ops) % Ops is defined in Figure 4.3.
If the operations log ol is not empty, return the operations in the log.
Otherwise, wait until ol is not empty and then return the operations.

out = proc(t: tuple, ol: opsilog)
Form an out request and add it to the operations log ol.

rd = proc(s: tuple, ol: ops-log) returns(tuple)
Form a rd request and add it to ol. Return with the result (a matching
tuple to a) of the rd; at this point the rd request has been removed from ol.

rd.ans = proc(t: tuple, ol: opsilog)
Deliver a rd answer t to the rd request entry on ol.

in = proc(s: tuple, ol: opsilog) returns(tuple)
Form an in1 request and add it to o/. Return a copy of the selected tuple
matching a; at this point all other matching tuples are locked. An in2
request is formed and added to ol before returning.

inl-ans = proc(lock.set, cur-view: replica-set, t.set: tuple.set, ol: opslog)
Deliver the in1 answer to the in1 request entry on ol.
Lock-set is a set of replicas having locks. Cur-view is the worker's current view.
T.set is a set of tuples locked at all the replicas.

unlock.ans = proc(ol: opsilog)
Inform the unlock entry on ol about its completion.

finished = proc(k: int, ol: ops.log)
Remove the first k requests from ol, and k) 0.

Figure 4.2: Specification for Operations Log

39

ops = array[op]
op = oneofird: tuple, out: out.op, inl: tuple, in2: in2.op, unlock: tuple]
out-op = record[t: tuple, t.stamp: int]
in2_op = record[s: tuple, t: tuple, t.stamp: int]

Figure 4.3: Ops Type

cur-view : view % Initial value = set of all replicas
cur-viewid: viewid % Initial value = < 0, my.id >
mid: int % Message id, initial value = 0
myid: workerid % Worker's id
ol: opsilog % Initial value = ops-log~new0

where
view = replica.et

Figure 4.4: State of a Worker

There is at most one rd, inl or unlock request in the operations log at any given

moment. This is because these operations block FG from further processing until the

results or completion acknowledgments are received. The completed rd, inl, or unlock

request is deleted from the operations log before FG continues its execution.

4.2.3 Worker State

Both FG and BG of a worker can change the worker's state. The state of a worker is

summarized in Figure 4.4. Cur-view contains the set of replicas in the worker's current view.

It always contains a majority of replicas in the system. No attempt is made to communicate

with the replicas outside of cur-view. The variables in Figure 4.4 are initialized to their

initial values before a program starts.

4.2.4 FG Processing

FG of a worker carries out the program processing. Wherever FG encounters an out,

rd, or in, it invokes the corresponding procedure shown in Figure 4.5. These procedures

interact with the operations log by adding the requests and picking up the results.

40

out = proc(t: tuple)
opsilogsout(t, ol)
end out

rd = proc(s: tuple)

% s is mutated so that its formals are assigned the actuals of a matching tuple.
t: tuple := opsaog$rd(s, ol)
tuple$assign(s, t) % Assign the actuals of t to the formals of s.
end rd

in = proc(s: tuple)
% s is mutated so that its formals are assigned some values.
t: tuple := ops/ogsin(s, ol)
tuplelassign(s, t) % Assign the actuals of t to the formals of s.
end in

Figure 4.5: Out, Rd, and In Procedures

4.2.5 BG Processing

BG actively checks if there are outstanding operation requests on the operations log. If so,

it sends a copy of the operations to all the replicas in the worker's view, and waits until

it is informed that the operations have been executed at all the replicas. When a list of

operations is sent to a replica, it is guaranteed that the order of the operations remains

the same during the transmission. At the replica, the operations are executed in the same

order.

The worker's cur.viewid is piggybacked on the operations list. If the worker's view is

the same as the replica's, the operations are executed, and their completion and results (if

any) are acknowledged by the replica. If the worker's view is more recent than that of the

replica's, the operations are ignored. If the worker's view is old, the operations are ignored,

and BG is informed about the new view. Whenever BG receives a new view, it updates

cur.view and cur.viewid of its worker.

If, within a reasonable delay, BG does not receive acknowledgments from all the replicas

in its curview for the operations sent, the same message is repeated (with a new mid) until

all the replies are received.

41

while true do
mid:= mid + 1
ops-list: ops -= opslogSget-ops(ol)
k: int := ops$size(ops) % The number of operations in opsJist.
% The following four variables keep track of reply information to various requests.
r.set: replica-set :- {} % The set of replicas that have replied.
inlans: tuple.set := tupleset$allO % Set containing all tuples in the tuple space.
lock.set: replica.set := {) % The set of replicas that have locks for inl.
returned?: bool := false % Indicating if a result has been delivered to a rd request.

for r: replica in cur-view do
send("ops", ops-list, mid, my.id, cur.viewid) to r
end % for

ti: int := currenttime0 + 61
while true do

receive until t1
tag rd.ans(m: int, rr: replica, found?: bool, t: tuple):

ifm 4 mid then
continue % continue to the next iteration of inner while loop.
end % if

if found? & --returned? then
ops.log$rdans(t, ol)
if k = 1 then break % exit inner while loop

else returned? := true
end % if

end % if
r.set = r-set U {rr
if (rset = Icur-viewl) then

opsaog$fnished(k - 1, ol)
break
end % if

tag inl.ans(m: int, rr: replica, locked?: bool, t.set: tuple.set):
if m $ mid then continue end % if
if locked? then

lock.set := lock.set U {rr}
inlans := inlans n t.set
end % if

r.set := r.set U {rr}
if jr-setI = Icur-viewl then

opslog$finished(k - 1, ol)
ops-log$inl.ans(lock.et, cur-view, inlans, ol)
break
end % if

Figure 4.6: BG Routine Part I

42

tag unlock..as(m: int, rr: replica):
if m $ mid then continue end % if
r.set := rset U {rr)
if jr-setI = Icurviewl then

ops-og$unock.ans(ol)
break
end % if

tag in2(m: int, rr: replica):
ifr $ mid then continue end % if
r.set := r.set U {rr}
if jr-setI = Icur.viewl then

opsiog$finished(k, ol)
break
end % if

tag out(m: int, rr: replica):
if m $ mid then continue end % if
r.set := r.set U {rr}
if jr-setI = Icur.viewl then

opslog$finished(k, ol)
break
end % if

tag newview(#: viewid, t-view: view):
if # > cur-viewid then

cur-view := tLview
curviewid := #
break % continue to the outer loop
end % if

end % receive
except when timeout: break end % ezcept

end % while
end % while

Figure 4.7: BG Routine Part II

43

The BG routine is shown in Figures 4.6 and 4.7. (In the code, a break statement causes

an exit from the smallest containing loop; a continue statement causes control to continue

with the next iteration of the smallest containing loop.)

A completion acknowledgment or a result received by a worker from a replica corresponds

to the last operation in the operations list sent. It is also an indication that all previous

operations have been completed at that replica. Recall that if a rd, an in1, or an unlock

is present in the operations log, it must be the last entry in the list. There might be any

number of out operations in the list. Only one in2 entry is possible at any given time since

the completion of an inl operation implies that all previous operations (including in2's)

are completed.

For a rd answer, the first matching tuple returned (from any replica) is used to update

the rd request entry in the operations log. If the rd is the only request on the operations log,

the replies from all other replicas are ignored. Otherwise, BG has to wait until the replies
from all the replicas in its cur-view are received, though only the first matching tuple is

used in the result of the rd operation. This is because all previous operations (out's or an

in2 or both) must be completed on all replicas in cur-view before the requests are removed

from the operations log.

For an in1 answer, BG must receive replies from all the replicas in the view in order to

make the decision about which tuple to remove from the tuple space. Once all the replies

are received, the previous requests are removed from the operations log.

When an inl cannot get the locks on a majority of the replicas in the view, the worker

tries to release the locks by replacing the inl entry on the operations log by an unlock

entry. Unlock must be the only entry on the operations log since all the previous requests

are removed by inl. Therefore, when the replies from all the replicas in the view are received

for an unlock entry, there is no need to remove any more requests from the operations log

other than the unlock request itself.

For an out or in2 request, when BG receives replies from all the replicas in cur.view,

the completed requests can be removed from the operations log.

When the replica receives a new view message, it updates the local view and viewid if

44

reqs = armay~reaj
req = oneofgrd: r&.req, out: out..req, inl: inlreq, in2: in2..re, unlock: uiilock.reiJ
rd..req = record[s: tuple, t: tuple]
outareq = recordft: tuple, t..stamp: intl
inl-req = recordfs: tuple, t-set: tuple..set, all?: bool, maj?: bool]
in2..xeq = wecordfs: tuple, t: tuple, t..stamp: int]
unlock-.req = record[s: tuple]

Figure 4.8: Request Queue Type

the viewid in the message is more recent. Otherwise, the new view message is ignored.

If not all the replicas have responded to the requests within a reasonable time, the

requests in the operations log are sent to the replicas again, and the whole process is

repeated.

Note that the log can contain the following requests: An unlock is always the only

request in the log. Otherwise, there can be zero or one in2 requests, followed by zero or

more out requests, followed by a single rd or inl. If the log contains an in2 followed by an

out, the out and all requests that follow it are not ready; otherwise, all requests are ready.

4.2.6 Implementing the Operations Log

This section describes the implementation of the operations log specified in Figure 4.2. In

addition to synchronizing FG and BG and recording requests and answers, the operations

log also assigns timestamps to requests that need them. The importance of the timestamps

will be discussed in the next section.

An operations log consists of a request queue, a timestamp generator, two boolean flags,

and the tickets. The request queue, reqa, is an array of requests. The format of the requests

is shown in Figure 4.8. A request is enqueued by calling addh, which appends the request

at the back of the array; a request is dequeued by calling remi or remh; these operations

remove an entry from the front or the end of the array, respectvely. The array operations

addh and remi are indimiie, that is, no other operations can be executed on the array

when addh and remi are in progress. This keeps the queue from being updated by both

.

45

ticket = abstract data type providing operations init, await-ge, await, dec, inc

% Ticket is a mutable container of an integer.

init = proc() returns(ticket)
Return a new ticket containing zero.

await = proc(t: ticket, a: int)
Return when the ticket t contains n.

await.ge = proc(t: ticket, n: int)
Return when the ticket t contains a value greater than or equal to n.

dec = proc(t: ticket, n: int)
Reduce t by n. Dec is indivisible.

inc = proc(t: ticket, n: int)
Increase t by n. Inc is indivisible.

end ticket

Figure 4.9: Specification for Ticket

FG and BG simultaneously.

The timestamp generator timestamp is implemented as an integer counter that assigns

a new timestamp to a request to be enqueued when needed. A new timestamp is generated

by incrementing the integer.

The flags are used to determine when requests are ready. Flag in2. is true whenever

there is an in2 request in the log; inout? is true if an out request follows this in2 request.

The tickets #reqs and #ans are used to keep track of the number of outstanding

requests in the queue and the number of outstanding answers.

Tickets are specified in Figure 4.9. They provide operations to increment and decrement

their values, and also to allow a process to wait for a ticket to have-a specified value. Tickets

allow FG and BG to synchronize with one another, for example, BG can wait until #reqs

contains a value greater than or equal to 0.

46

ops-log = cluster is new, rd, rd..ans, out, in, inksnsm, unlock .ans finished
get-ops

rep = recordrequest-queue: reqa, timestamp: int, in2?, inout?: bool,
#ans, #reqs, : ticket]

new = proc() ret urns(cvt)
return(rep$request-ueue: reqasnewo, timestamp: 0, in2?: false,

mont?: false, #ans, #reqs: ticket$mnito}
end new

get-ops = proc(ol: cvt) returns(ops)
% If ol.request..queue is not empty, return all ready request entries. Otherwise,
% wait until ol.request-queue is not empty.
tIcket~await..ge(ol.#reqs, 1)
temp..ops: ops := opslnew()
for request: req in reqs$elements(ol.request.queue) do

% req~op returns the corresponding op of req
ops~addh(temp..ops, req2op(request))
if inout? then return end % just return first element in this case
end % for

ret urn(temp.ops)
end get..ops

out = proc(t: tuple, ol: cvt)
% Log the out request on ol.
ol.tiinestamp := ol.timestamp + 1
oe: out .req := out..req${t: t, t..stamp: ol.timestamp}
reqs$addh(ol.request-queue, oe)
if in2? then mnout? :=true end
ticket$inc(ol.#reqs, 1)
end out

rd = proc(s: tuple, ol: cvt) returns(tuple)
% Return a copy of a tuple matching s.
re: rd..req := rd..req${s: a, t: tupletnil))
reqsaddh(ol.request-quene, re)
ticket~inc(ol.#reqs, 1)
ticket$await~gs(ol.#&ns, 1)
ticket~dec(ol.#ans, 1)
reqs~remh(ol.request.queue)
returu(re.tuple)
end rd

Figure 4.10: Operations Log Cluster Part I

47

rd..ans =proe(t: tuple, ol: cvt)
% Deliver a rd ans t to ol; rd must be the top entry in ol.
tagease reqs~top(o.request-queue)

tag rd(re: rd..req):
re.t := t
ticketdec(ol.#reqs, 1)
ticket$inc(ol.#ans, 1)

others: % Not possible.
end tagcase

end rd-.ans

in =proc(s: tuple, ol: cvt) ret urns(tuple)
% Return a copy of a selected tuple matching s while all matching
% tuples are locked, and in2 request is logged on oL,
ie: inl-req := inl-reqSf s: s, t..set: tuple..set$nil(), all?: false, maj?: false}
reqsaddh(ol.request.queue, ie)
ticket$inc(ol.#reqs, 1)
while true do

ticketlawait..ge(ol.#ans, 1)
ticket$dec(ol.#ans, 1)
if ie.all? then % All replicas have locks.

if ~-tuple..set$empty?(ie.t..set) then.
res: tuple := tuple..set$select(ie.t..set) % Any one will do.
ol.timestamp: o.timestamp + 1
i2e: iu2-req := in2..req${s: s, t: res, t..stamp: ol.timestamp}
reqslremh(ol.request.queue)
reqs$addli(ol.request-queue, i2e)
oI.in2? := true
ticket$inc(ol.#reqs, 1)
return(res)
else % i.e., if ie.all?=true & ie.t..set={} repeat inl.

ie.ail? := false
ticket$inc(ol.#reqs, 1)

end % if

Figure 4.11: Operations Log Cluster Part HI

48

elseif , ie~maj? then % No majority locks - Unlock.
ue: unlock.req := unlocLkreqt{s: s)
reqs$remh(ol.request.queue)
reqsaddh(ol.request.queue, ue)
ticket$inc(ol.#reqs, 1)
ticket$await.ge(ol.#ans, 1)
ticket$dec(ol.#ans, 1)
reqs$remh(olrequest.queue)
reqs$addh(olrequestqueue, ie)
ticket$inc(ol.#reqs, 1)

else % i.e., ie.all? = false, ie.maj = true, repeat in1.
ie.maj? := false
ticket$inc(ol.#reqs, 1)

end % if
end % while

end in

inl.ans = proc(ock.set: replica.set, cur-view: view, t-set: tuple.-set, ol: cvt)
% Inform ol that all the replies to the top entry (inl) are received.
% lockset is the set of replicas having locks.
% Lsets is a set of common tuples locked by all replicas.
tagease reqs$remh(ol.request.queue)

tag inl(ie: inl.req):
if Ilock-setI = Icur-viewI then

ie.all? true
ie.t.set := t.set

else ie.maj? := ismaj?(lock-set, cur-view)
% ismajf(sl, st) returns true if sl is a majority of s2, and
% returns false otherwise.
end % if

ticketldec(ol.#reqs, 1)
ticket$inc(ol.#ans, 1)

others: % Not possible.
end % tagcase

end inl-ans

unlock-ans = proc(ol: cvt)
% The unlock entry is done.
ticket$dec(ol.#reqs, 1)
ticket$inc(ol.#ans, 1)
end unlock.s

Figure 4.12: Operations Log Cluster Part I

49

finished = proc(k: int, ol: cvt)
% Notify ol that the first k entires have been processed. Purge all
% these entries from oLrequest-queue, and decrement #reqs and fins.
for i: Jut in int$fromto(reqs$Iow(ol.request-queue),

reqslow(ol.request.queue) + k - 1) do
ticketldec(ol.#reqs, 1)
end % for

in2? := false % reset flags since any in requests have now been removed
inout? := false
end finished

end reqsJog

Figure 4.13: Operations Log Cluster Part IV

The implementation of the operations logs is shown in Figures 4.10-4.13. The basic

strategy is the following:

1. Requests are added by enqueuing them on the request queue, incrementing #reqs,

and setting in? and inout? accordingly.

2. If an answer to a rd, an in1, or an unlock request is ready, the request on the

request queue is updated, the #reqs ticket is decremented, and the #ans ticket is

incremented. When the answer is picked up, the #ans ticket is decremented, and the

entry on the request queue is deleted.

3. Finished removes the specified number of (out and in2) entries from the bottom of

the request queue, decrements #reqs accordingly, and resets the in2? and inout?

flags. Resetting the flags is appropriate since if there was an in2 entry in the log, it

has now been removed.

4. Get-ops blocks the calling process until the #reqs is greater than zero and then returns

a list of operations corresponding to the ready requests in the request queue.

The tuple space operations out, rd, and in are processed as follows (refer to Figures 4.5,

4.6, 4.7, and 4.10 - 4.13):

50

" Out(t) - FG forms an out request and enqueues the request on the request queue,

inout? is set to true if there is an in2 entry in the log (in2? = true), and #reqs is

incremented (the out operation can return at this point). This enables BG to receive

the operation request using get-ops. When the out is finished, BG calls finished to

remove the request from the request queue and to decrement #reqs.

* Rd(s) - The rd operation places the request on the request queue, increments the

#reqs ticket, and waits until #ans becomes nonzero. When that happens, rd resets

#ans, picks up the result in the rd entry on the queue, deletes the entry, and assigns

the actuals in the result to the formals in s.

The answer to the rd entry is delivered by BG by calling rd.ans when one of the

replicas responds with a matching tuple. Rdans decrements #reqs, updates the rd

request with the matching tuple, and increments #ans.

* In(s) - The in operation places an inl request on the request queue and increments

#reqs. This causes BG to do the request and to return the answer by calling inlans,

which stores the information obtained by BG in the entry, decrements #reqs, and

increments #ans. Meanwhile in waits until #ans is nonzero. Then it resets #ans

and checks the information in the updated in1 entry. If all the replicas in the view

have set the locks and the intersection of the returned tuple sets is not empty, a

random tuple is selected from the intersection, the inl entry is replaced by an in2

on the request queue, in*? is set, #reqs is incremented, the actuals of the selected

tuple are assigned to the formals of s, and in returns. If a majority, but not all, of the

replicas in the view have set locks, or if all have locks but the intersection is empty,

the inl entry is left on the queue and #reqs is incremented to cause the request to

be repeated by BG. Otherwise, the inl entry on the request queue is replaced by an

unlock entry, and #reqa is incremented; this causes BG to release the locks. After

the locks are released, the unlock entry is replaced by the inl request so that the

in1 can be tried again.

51

4.3 Processing On a Replica

The processing of a worker described above is coupled with the processing of a replica.

Replicas are not only responsible for executing the operations on tuple space copies, but

also for discarding out the duplicate messages. This section describes these activities.

4.3.1 Timestamp-Mid Table

Replicas may receive more than one message for the same operation, either because BG

sends a request more than once or because of duplication in the network. The unequal

mids are used to recognize and discard duplicates generated by the network, but are not

sufficient to discard operation requests sent multiple times by a worker because a new mid

is used every time a message is sent. Some operations can be repeated without causing any

inconsistencies; others cannot. For instance, repeated out(t)'s will store multiple copies of

t when only one is appropriate; repeated in2's may cause too many tuples to be deleted.

On the other hand, rd and unlock can be repeated without creating inconsistencies. We

call out and in2 unrepeatable operations. To avoid unrepeatable operations being executed

more than once at a replica, a timestamp is associated with each unrepeatable operation.

Each replica keeps a table of the last timestamp seen for each worker. These timestamps

indicate the workers' high water marks - all the unrepeatable operations issued by a worker

with timestamps at or below the worker's high water mark have already been executed, and

should not be executed again.

Information about mids is also stored in the table. If a replica has seen the n-th message

from a worker, then any message before the n-th is obsolete and can be ignored. Storing

mids is not necessary for the correctness of the protocol. It is merely an optimization.

The timestamp and mid information about all the workers is kept by a replica using a

table called the timestamp-mid table. Figure 4.14 gives the specification of the table. A

table resides at each replica. It records the timestamp of the last unrepeatable operation

the replica has executed, and the latest mid the replica has seen for each worker. There is

at most one entry for each worker.

-2*

52

table = abstract data type providing operations new, get-ts, get.mid,
update.ts, update.mid

% A table contains the last timestamp seen and last mid received
% by a replica for each worker. There is at most one entry for each worker.
% Tables are mutable.

new = proco returns(table)
Return a new table containing no entries.

getts = proc(tb: table, w: workerid) returns(int)
Return the timestamp of the last unrepeatable operation issued by w.
If w is not already in tb, add an entry for w in tb with the
initial timestamp and mid, and return the initial timestamp.

getmid = proc(tb: table, w: worker-id) returns(int)
Return the most recent mid of w. If there is no entry for w in tb, create
one with the initial tirnestamp and mid, and return the initial mid.

update-ts = proc(tb: table, w: worker-id, ts: int)
Update w's timestamp field with ts.

update.mid = proc(tb: table, w: workerid, mid: int)
Update the mid field of w with mid.

end table

Figure 4.14: Specification for Timestamp-Mid Table

53

4.3.2 Tuple Space

Each replica keeps a copy of the tuple space. In our protocol, we have assumed that a

tuple space is implemented as a set of tuple sets. The tuples with the same logical name

are grouped into the same set. Each set has a lock. When a set is locked by one worker,

no other worker can place a lock or delete any of the tiqples from the set until the lock is

released. Reading of a locked tuple is allowed, however.

The specification of the tuple space and its operations is given in Figure 4.15.

Notice that there can be only one lock on a tuple set at any given moment. When a

tuple set is locked, the tuples in the set can be deleted only by the worker that set the lock.

A locked tuple set can still accept tuples stored by other workers. The new incoming tuples

are automatically locked once they enter a locked set.

4.3.3 Replica State

The part of a replica's state that affects the operations protocol is summarized in Fig-

ure 4.16. Initially, the local view and its id are undefined on each replica. An execution of

the view change protocol is necessary to form a meaningful view. This will become clear in

the next chapter. The local tuple space copy and the timestamp-mid table are initialized

to using tupleSnew0 and tableSnewO, respectively.

4.3.4 Executing Operations

When a replica is "active", it calls the procedure ezecute-ops, shown in Figures 4.17

and 4.18, whenever it receives an operations list from a worker. The arguments needed are

the following: ops.ist (the operations list), mid (the mid corresponding to the message

sent by the worker), w (worker's id), and # (worker's view id).

4.4 Summary

This chapter has described the operations protocol in detail. Its execution requires the

coupling of both the worker's processing and part of the replica's processing.

54

tuple.space = abstract data type providing operations new, delete-unlock, lock,
unlock, search, store

new = proc() returns(tuple-space)
Return a new empty tuple space.

store = proc(tspace: tuple.space, t: tuple)
Store t in tapace.

lock = proc(tspace: tuple.space, s: tuple, w: worker) returns(tuple.set) signals(refused)
If the set containing tuples with s's logical name is not yet
locked by a worker other than w, lock the set and return the set of
matching tuple(s). (If there are no matching tuples, return an empty set.)
If the tuple set has already been locked by a worker other than w, signal
refused.

unlock = proc(tspace: tuple.space, s: tuple, w: worker)
Unlock the set that has the same logical name as a and is locked by to,

if such a set exits. Otherwise, do nothing.

delete-unlock = proc(tspace: tuple.space, t: tuple, s: tuple)
Delete t from tapace and unlock the tuple set that matches a.

search = proc(tspace: tuple.space, s: tuple) returns(tuple) signals(not.found)
Search tapace for a tuple that matches s. If one is found, return it.
Otherwise, signal not-found.

end tuple.space

Figure 4.15: Specification for Tuple Space

. ...

55

status: status % replica is active or doing a view change
cur-view: view % Initial value = undefined.
cur-viewid: viewid % Initially = undefined.
myjd: replica id % Replica's id.
t.space: tuplespace % Initial value = tuple-space$newo
tbl: table % Initial value = tableSnewO .

where

status = oneoitactive, view-manager, underling: null]
viewid <n: int, r: replicaid>
view = replica-set

Figure 4.16: Replica State (Partial)

In addition to ensuring that the tuple space operations are executed on all the replicas in

cur-view eventually, the protocol guarantees that no undesirable effects, such as storing or

deleting too many tuples, result. To achieve this, the workers send their requests repeatedly

until they are satisfied with the returned results, and the replicas discard the operations

they have already executed. Timestamps and mids are used to detect duplicate operations

and messages.

Unnecessary delay of program processing is avoided by the introduction of background

process (at each worker), which continuously processes the requests generated by the pro-

gram process. The program process is blocked only when it needs to know the result or to

ensure the constraint that in2's must be finished before out's begin is obeyed.

The program (foreground) process and the background process at each worker commu-

nicate with each other via a data structure called the operations log. The log synchronizes

the processes, logs the outstanding requests and results, and generates timestamps to pre-

vent duplicate processing or unrepeatable operations. Another attractive feature of the

operations log and the background process is that they provide a level of abstraction that

hides the tuple space replication from the program process.

The correctness and efficiency of the operations protocol depend largely on the assump-

tion that view changes are correctly taken care of by the view change algorithm. The next

56

execute-.ope proc(opsilist: ops, mid: int, w: worker-jd, #: viewid)

if mid <= table$get..mid(tbl, w) then return
else tablelupdate..mid(tbl, w, mid)
end % if

if # 0 cuz..viewid. then
send("newview", cur..viewid, cur-.view) to w
return
end %if

for operation: op in ops$elements(ops..list) do
tagcase operation

P tag rd(e: tuple):
found?: bool := true
t : tuple := tupleSnil()
t := tuple..space~search(t..space, e)

except when not..ound: found? :=false end %except
send("rdans", mid, my-id, found?, t) to w
return

tag out(e: out-op):
if e.t..stamp > table~get-ts(tbl, w) then

table$update..ts(tbl, w, e.tLstamp)
tuple-space~store(t.space, e.t)
end % if

tag inl(e: tuple):
locked?: bool := true
t..set: tuple-set := tuple..set$nil()
t-set := tuple-space~lock(tspace, e, W)

except when refused: locked? := false end %except
send('inl-ans", mid, myid, locked?, t..set) to w
return

tag in2(e: in2op):
if e.t-stamp > table~get-ts(tbl, w) then

tablelupdate..s(tbl, w, e.tLstamp)
tuple..space$delete-nnlock(t.space, elt, e.s)
end %if

Figure 4.17: Execute Operations Procedure I

57

tag unlock(e: tuple):
tuple-space$unlock(t-space, e, w)
send("unlockans", mid, myid) to w
return

end % tagcase
end % for

% If the last entry of opaJist is either an out or an in2 operation,
% send a msg to w. The other three cases, rd, in1 and unlock, have
% already had replies.

tagcase ops$top(opsilist)
tag out: send("out.ans", mid, my.id) to w
tag in2: aend("in2.ans", mid, myjd) to w
others: % ignore
end % tagease

end % ezecute.ops

Figure 4.18: Execute Operations Procedure II

chapter describes this algorithm.

Chapter 5

View Change Algorithm

The operations protocol explained above is a read-one-write-all scheme, that is, rd can

return a result from any replica in the executing worker's view, but out and in operations

are completed only if the executing worker knows that their effects are visible at every replica

in its view. Thus, every replica in the worker's view knows all the completed operations

that change the tuple space state.

Network and node failures cause some of the replicas to be inaccessible from the workers.

If we let the workers access whichever replica they can access at the moment, an inconsis-

tency may result. For example, suppose a network failure separates replica r from the rest of

the system. While r is inaccessible, updates are made to other replicas. When the network

is repaired and r becomes accessible, r's state is out of date, and must be brought up to

date before being used again. The view change algorithm is used to mask the problems like

this as well as to ensure that updates to the tuple space are not lost during failures.

The algorithm works roughly as follows: each replica processes a view consisting of the

set of replicas it believes that it can communicate with. When a replica discovers that it

no longer can communicate with some replica, or communication is re-established with a

replica it could not hear from before, it starts a view change, and acts as the view change

manager of the view change. During the view change, the manager constructs a globally

unique new viewid, and sends a message to all other replicas, inviting them to join the new

view. The invited replicas can choose to accept the invitation. Those that have accepted

the invitation are called underlings. If a majority of replicas accept the invitation, a new

view is formed and an up-to-date tuple space state is chosen to be used to initialize the

58

59

tuple space state of all members of the new view. During a view change, the manager and

the underlings are blocked from workers' operation requests.

In the next section, we introduce the state information needed in order for a replica to

provide service to workers' requests and run the view change algorithm. The mechanism

to test accessibility of replicas is described in section 5.2. Section 5.3 gives an overview of

the view change algorithm. Each replica is in one of three states: active, view-manager and

underling. Active replicas execute workers' requests, monitor the topological changes in

the network, and monitor view change invitations. View change managers coordinate view

changes while monitoring invitations. Replicas in the underling state monitor invitations

as well as participate in view changes. The replica activities in each of these states are

detailed in sections 5.4, 5.5, and 5.6, respectively. Section 5.7 gives an example to illustrate

the view change algorithm. An informal correctness argument is stated in section 5.8. We

will make certain assumptions about crash failures during the discussion of the algorithm,

namely that the replica state is stable and survives crashes. The full discussion of crashes

is delayed until section 5.9, in which we will discuss a number of possible solutions to crash

problems. A possible optimization is also discussed in section 5.9.

5.1 Replica State

The view change algorithm requires some information to be recorded in the replica state.

This information is summarized in Figure 5.1 (an extension of Figure 4.16).

The current state of the replica is indicated by status, which is updated by the view

change algorithm. Each replica knows the current view, cur-view, of which it is a member.

Cur-view is identified by an unique viewid, cur.viewid. A replica also keeps a copy of the

highest viewid it has seen, maz.viewid. It is always true that cur.viewid is less than or

equal to mazxviewid. The set of all replicas in the system is represented by orig-config,

which stands for original the configuration. The state of the tuple space copy is in t.space,

and the timestamp-mid table described in the last chapter is kept t.sing tbl.

When a replica is first created, status is view.manager; t.space has the value

tuple.pace$newo; tbl is table$newO; my.id is assigned the replica's id; cur.view and

60

status: status % replica is active or doing a view change
t.space: tuple-space % tuple space copy
tbl: table % timeatamp-mid table
myid: replica-id % replica id
cur.viewid: viewid % current vieuid
cur-view: view % current tew
max.viewid: viewid % highest viewid seen so far
origconfig: replica.set % set of all replicas

where

status = oneolactive, view.manager, underling: null]
viewid - <n: int, r: replica.id>
view = replica.set

Figure 5.1: Replica State (Complete)

cur.viewid are undefined; max-viewid has the initial value {0, my.id); and origcon fig

contains the ids of all the replicas in the system. One view change is necessary to let the

replicas have a common view and viewid to work with.

We assume that the entire replica state is stored on stable storage [19]; we discuss this

assumption in section 5.9.

5.2 Probes

The topological changes in the network are detected by sending and receiving probes. This

is accomplished using two processes at each replica, one that sends probes and the other

that receives them.

The probing procedure is shown in Figure 5.2, and works as follows. Probes are sent

out to all other replicas in the system periodically, one every probe-interval. Every time a

probe is sent, the probing process waits to collect the replies. It adds the replying replica's

id in a temporary set reply.et if the reply is to the current prooe. After a time interval

62, long enough for a round trip probe in the normal situation, the process checks to see if

reply.et contains the same replicas as its current view. Any discrepancy, while the replica

is in the active state, indicates that there may be a change in the network's configuration,

61

send-probes = proc()
probeinterval: int := % fill in the appropriate probe period
probe.seq: int := 0
while true do

if is.active(status) then
for rr: replica.id in replica.set$elements(orig.config - (myad}) do

send("probe", myid, probe.seq) to rr
end % for

reply.set: replica.set := {my-id}
t 2 : int := current.time + 62
while true do

receive until t 2

probe-resp(r: replica.id, m: int):
if m = probe-seq then reply-set := reply-set U {r} end % if

end % receive
except when timeout: break end % ezcept

end % while
if is.active(status) cand (reply-set ',= cur-view) then

send change(curviewid) to myid
end % if

end % if
probe.seq := probe.seq + 1
sleep(probe.interval)
end % while

end send.probes

Figure 5.2: Send Probe

62

monitor-probes = proc()
while true do

receive
probe(r: replica..id, m: int):

send("proberesp", myid, m) to r
end % receive

end % while
end monitor-probes

Figure 5.3: Monitor Probe

so the probing process sends a change message to another process (to be discussed later) of

the same replica, which triggers a view change.

Notice that said there may be a reconfiguration instead of there is a reconfiguration.

This is because lost or delayed messages may cause reply.set to be inconsistent with the

replica's current view. But occasional message loss or delay does not always mean there is

a topological change. Also notice that probes are sent only when a replica is in the "active"

state.

The probes are monitored by the monitoring processes running monitor.probes (shown

in Figure 5.3) at each replica. To ensure that replies correspond to the current probe, a

sequence number is piggybacked on the probing message, and returned on the reply. This

allows the probing process to consider only current replies.

5.3 Overview of the View Change Algorithm

As we said earlier, the probes provide a means of detecting possible network reconfigurations.

Once a replica believes that it can no longer communicate with the same set of replicas it

could previously, a change message is sent by the probing process. This message is received

by the third process (on the same replica) which in turn initiates a view change. The replica

switches from being active to being the manager of the view change.

The view change algorithm operates in one and a half phases. In the first phase, the

manager constructs a new globally unique viewid, invites all replicas in the system to join

63

the new view, and waits for responses. A replica accepts the invitation only if it has not

already received another invitation to join a higher-numbered view; each acceptance message

contains the latest viewid and a copy of the replica's tuple space. We assume that a crashed

replica recovers with its old state restored. This assumption guarantees that a replica either

does not reply to an invitation, or replies with the tuple space state that corresponds to its

current viewid. In section 5.9, we will discuss mechanisms to support this assumption.

The manager keeps a temporary copy of the tuple space and the timestamp-mid ta-

ble, which has the replica's own tuple space copy at the beginning of the view change.

Each incoming acceptance is checked, and the more up-to-date tuple space and table copy

(indicated by the accompanying viewid) is used to update that temporary copy. So the

temporary copy of the tuple space is always the most up-to-date copy the manager has

seen.

If less than a sub-majority' of replicas accept the invitation, no new view can be formed.

The replicas will repeatedly attempt to form another view until a view change succeeds.

Otherwise, the view change enters the last half phase during which the manager sends a

commit message to all the replicas that have agreed to join the view. The temporary copy

of the tuple space and the timestamp-mid table is piggybacked on the commit message, and

is used to update the state of all the replicas in the new view. The view manager becomes

active once its local state is updated and the commit message is sent. The participating

replicas become active when they receive the commit message and their local states are

updated.

The algorithm is implemented as the third process of a replica (the first two being

sending and monitoring probes). We call this process the main process. The main process

is also responsible for executing a worker's tuple space operation requests. Figure 5.4 shows

the state diagram of the view change algorithm.

In the "active" state, the replica sends and monitors probe messages, monitors view

change invitations, and executes the operation requests from the 'workers. If probing triggers

a view change, the replica moves to the "view.manager" state. If it receives an invitation

'A sub-majority is one less than a majority.

64

ACTIVE
o Send & receive probes

Receive probe o Monitor view changes
responses
incompatible with o Execute requests
the view.

Commit to a
Co itnew view.

sent, view / / Receive an

change done, invitation to
a higher
numbered view.

VIEW MANAGER _UNDERLING
o Create a new viewo Monitor view changes o Wait for commit infoNo commit info o Monitor view changes

received.

invitation torthigher numbered\
view.

Figure 5.4: State Diagram for the View Change Algorithm

65

while true do
tagcase status

tag active: active()
tag viewamanager: view.managero
tag underling: underling()
end % tagcase

end % while

Figure 5.5: The View Change Algorithm

to join a view with higher viewid than the maximum it has seen, it changes to "underling"

state and participates in a view change.

In the "view-manager" state, the replica coordinates a view change as well as monitors

view change invitations. When a view change is done, it resumes execution in the "active"

state. If, during the view change, the replica receives an invitation to join a view with a

higher viewid than any it has seen, it becomes an "underling."

When a replica is an "underling," it is a participant in a view change. When it receives

a commit message, it commits itself to the new view and enters the "active" state. If it does

not receive a commit message within a reasonable time, it becomes to be a view manager

and starts a view change. If it receives an invitation to join a higher numbered view, it

accepts the invitation and remains in the "underling" state.

Figure 5.5 shows the program of the above state diagram. It is structured as an infinite

loop. The replica determines its current state and calls the procedure that is executed while

it is in that state. The next three sections discuss these procedures.

5.4 Active Replicas

Figure 5.6 shows the procedure for the active state. The main process in the "active"

state receives three types of messages: change, invite, and op1. Change messages are sent

by the probing process on the same replica when it suspects changes in communication

capability. Invite messages are sent by other replicas when they start view changes. Ops

messages are operation requests sent by the workers. The ezecute.ops procedure called

66

active = proc(
receive

change(vid: viewid):
if vid < cur.viewid then return end % if view is already changed
status := view-manager

invite(vid: viewid, r: replicaid):
if vid <= cur-viewid then return end % if an out-dated invitation

max.viewid := vid
send("accept", my.id, vid, curviewid, t.space) to r
status := underling

ops(ops: opstype, mid: int, w: workerid, vid: viewid):
execute.ops(ops, mid, w, vid)

end % receive
end active

Figure 5.6: Active

upon receiving an ops message was illustrated in Figures 4.17 and 4.18 of the last chapter.

It is worth pointing out a possible race situation here. Suppose that the probing process

of a replica r, sends a change message to the main process, at the same time r, receives an

invitation to join a new higher numbered view from replica r2 . The main process of r, can

nondeterministically select either message to receive first. If the change message is selected

first, rl enters the "view-manager" state and competes with r2 to change the view (we

will mention the current view changes in a later section). If r1 's view change succeeds, its

curviewid will be updated to reflect the new view. When the invite message is processed,

the vid in the message is likely to be less than or equal to cur.viewid, and the message is

thus ignored. On the other hand, if the invite message is received first, r1 participates in

r 2 's view change. When the view change is completed and r, becomes "active" again, its

cur-viewid is updated. This causes the change message to be ignored when it is received,

since vid in the change message is the old cur.viewid on rl, which must be lower than the

new cur.viewid.

5.5 View Managers

Figure 5.7 shows the procedure run by the view managers. The local variable tUs is the

67

view-.manager = proc()
Us: tuple-.space :=t-space
Lvid: viewid :=cur..viewid
t..tbl: table :=thi
n-.view: replica-.set :={my-d}
max-.viewid :=<max..viewid.n + 1, my-id>

for rr: replica-id in replica-set$elements(orig-onhig - {my..id}) do
send("invite", max..viewid, my-id) to rr
end % for

t 2: int := current-.time + 62
while true do

receive until t2

accept(r: replica-id, vid, rtn..viewid: viewid, ts: tuple-.space, ta: table):
if vid = max-.viewid then

n..view := n-view U {r}
if t..vid < rtn..viewid then

t..vid := rtn..viewid
t.ts := ts
t..tble := ta
end %if

if In-viewI = lorig-configl then break end % if
end %if

invite(vid: viewid, r: replica-id):
if vid <= max..viewid then continue end % if
max..viewid := vid
send("accept", my-id, vid, cur..viewid, t..space) to r
status := underling
return

end % receive
except when timeout: break end % except

end % while

if -. smaj?(n-view, orig-config) then return end % if
cur-.view := n-.view
cur..viewid := max-.viewid
t-space := t.ts
tbl := Ltbl
for ffr: replica-id in replica..set$elements(n.view - { myidl) do

send("commit", cur..viewid, cur-view, t-space, tbl) to rr
end % for

status := active
end view-.manager

Figure 5.7: View Manager

68

temporary copy of the tuple space. It records the most recent copy of the tuple space the

manager has seen. Tt. is initialized to the view manager's local.tuple space. T.vid keeps

a copy of the viewid corresponding to tUs. T-b keeps the most up-to-date timestamp-

mid table. N.view is a temporary replica set containing the ids of the replicas that have

accepted the view change invitation. The globally unique viewid is created by pairing the

sequence number that is the successor of the largest sequence number in a viewid seen so

far and its replica id.

To manage a view change, the manager first sends the invitation to all the replicas in

orig.config excluding itself and then waits for responses. There are two possible types

of messages to be received - accept messages (sent by the accepting replicas) and invite

messages (sent by the replicas that start new view changes).

When an accept message is received, the manager checks if the acceptance is to the

invitation just sent. If not, the message is ignored. Otherwise, n.view is updated to include

the id of the accepting replica, and tUs, tLvid, and tJbl are updated if necessary.

When an invite message is received, the invitation is accepted only if the view the

replica is invited to join has a higher viewid than any it has seen so far. By accepting the

invitation, the manager abandons the current view change in progress and changes its state

to the "underling" to participate in the new view change.

The receiving loop can be exited in two ways: either all the replicas in orig-config have

accepted the invitation or 62 times out. 62 is set up so that it is sufficient for a normal

round-trip of inviting and accepting messages to be transmitted.

In order to form a new view, there must be a majority of replicas accepting the invitation.

(Recall that function ismaj?(sl, s.2) checks if replica set sl contains a majority members of

92.) If this is not true, the current view change is abandoned, and the manager will attempt

to form another new view. Otherwise, the manager's current state (cur-view, cur.viewid,

t..space, and tbl) is updated, and a commit message is sent to all the accepting replicas along

with the new view, viewid, tuple space, and timestamp-mid table copy. Upon completion,

the manager enters the "active" state.

69

underling = proc(
t 3 : int := current-time + 63
while true do

receive until t 3

commit(vid: view.id, n.view: view, tsp: tuple-space, ta: table):
if vid = maxviewid then

cur-view := nview
cur.viewid:= max.viewid
t-space := tsp
tbl := ta
break
end % if

invite(vid: viewid, r: replicaid):
if vid <= max.viewid then continue end % if
max-viewid := vid
send("accept", my.id, vid, cur.viewid, t.space) to r
return

end % receive
except when timeout:

status := view.manager
return
end % except

end % while
status = active
end underling

Figure 5.8: Underling

5.6 Underlings

Figure 5.8 shows the code executed by the main process in the "underling" state. A

replica becomes an "underling" if it accepts an invitation to join a new view. While it is in

the "underling" state, it expects to receive a commit message from the manager. It is also

possible to receive an invitation to join a new view.

The time interval 63 in the receive statement is set in such a way that is sufficiently long

to allow the acceptance massage to go from the underling to the manager and the commit

message to go from the manager to the underling in the normal situation. If the timeout

expires, the underling starts a new view change by switching to the "view-manager" state.

70

When a commit message is received, the underling checks if the commit request is for the

view it has agreed to join. If not, the commit message is ignored. .Otherwise, the underling

uses the information piggybacked on the commit message to update its local state and

switch to the "active" state.

If an invitation for a higher viewid is received, the underling accepts the invitation,

ceases its involvement in the current view change, and stays in the "underling" state to

wait for the new commit message. Otherwise, the invitation is ignored.

5.7 Examples

This section gives an example to illustrate that the view change algorithm is robust in both

the simple case where there is only one view manager coordinating a view change and the

case when multiple view managers compete to form new views.

5.7.1 Simple Case

Let us suppose that we have five replicas in the original configuration, r7, r 2, r3, r4, and

r5. At some point, the view contains all five replicas that are in the "active" state. Then a

failure occurs, which makes rl inaccessible from the other replicas. We assume for simplicity

that following the initial failure, no additional failures occur during the view change; once

r, becomes inaccessible, it remains inaccessible for the duration of the algorithm.

At the point of failure, all five replicas have the same viewid v1 , <1, r, >, identifying

view {r, r273, r4, r5}. When r, becomes inaccessible, the other replicas stop hearing

from it. We suppose that r3 detects this change and starts the view change. (More than

one replica may detect this change and trigger the algorithm; this is the topic of the next

subsection). R3 becomes the view manager and enters the first phase of the algorithm.

It computes a new viewid <2, r3 >, which is higher than anything r3 has seen. Next, it

sends the invitation message containing the new viewid to other replicas in the original

configuration and waits for responses.

Each of r2, r4, and rs receives the invitation message and sends back an acceptance

message containing, among other things, its current viewid, a copy of its local tuple space

71

and the timestamp-mid table. No reply is forthcoming from rl since it is inaccessible. R3

collects the responses and keeps the most up-to-date state it has seen. (In this case, the

tuple space of r2, r3, r4 and 7" are all equally up-to-date, so r3's tuple space will be used.)

In the later half phase, r3 forms a new view containing r2, r3, r4 and rs. This is possible

because the new view has a majority of replicas. After updating its own local state, r3

sends a commit message containing the new viewid (<2, r3 >), the new view ({r2, r3, r4,

r3)), and an up-to-date copy of the tuple space and the table to r2, r 4 and r5, and becomes

"active" to accept operation requests, send and receive probes, and monitors new view

changes. When r2, r4, and r5 receive the commit message, they update their local state

and switch to the "active" status.

In the meantime, while all this is going on ri is also running the algorithm and is trying

to form a view. As the view manager, it computes the new viewid and sends invitation mes-

sages to the other replicas. No responses are forthcoming due to the communication failure.

It waits in vain for acceptances and eventually times out, remaining in the "view.manager"

state.

In this scenario, the algorithm forms a new view excluding inaccessible replicas. The

algorithm works similarly in the case of including replicas that become accessible when a

failure is repaired.

5.7.2 Concurrent View Managers

If, in the above scenario, more than one replica detects a change in the communication capa-

bility, several replicas may become view managers simultaneously. Our view managerment

algorithm handles this case of multiple concurrent view managers in the following way.

The viewids generated by different replicas are distinct, since we include the replica id

as part of the viewid. In the previous example, let us imagine that rl through r5 are labeled

in increasing order. Suppose replicas r2 and r3 start up as view managers. R 2 computes

<2, r2 > and r3 computes <2, r3 >. Both send invitation messages to everybody else in

the configuration. The following events happen:

1. R2 receives an invitation from r3. Since <2, r3 > > <2, r2 >, r2 accepts the invitation

72

and stops acting as a view manager.

2. R3 receives an invitation from r2. Since <2, r2 > < <2, r3 >, r3 knows of a higher

viewid, so it ignores the invitation from r2.

3. R4 and rs receive invitation messages from both r2 and r3. If they receive the invi-

tation from r2 first, they will accept the invitation and wait for the commit message

from r2. When they receive the invitation from r3, they will stop participating in the

previous view change and start participating in the view change initiated by r3. On

the other hand, if r4 and rs receive the invitation from r3 first, the later invitation,

the one from r2, will be ignored because it has a lower viewid.

Thus, no matter in what order the messages arrive the outcome is the same: r3's new

viewid is the one that prevails because its viewid is higher. This conclusion can be gener-

alized to any number of concurrent managers.

5.8 Correctness

We claim that (1) the effects of the tuple space operations either survive into the new view

(if the operations are completed at all the replicas in the old view) or will be retried in the

new view (if the operations are not completed at all the replicas in the old view), and (2)

the unrepeatable operations are executed at most once across the view changes.

The intuition behind the first claim is that every view has at least a majority of replicas.

Thus it contains at least one replica that knows about the effects of all operations that

completed in earlier views. That replica is used to update the state of the replicas in the

new view. If the operations are not completed at all the replicas in a view, the executing

worker will be repeatedly trying until all the replicas in the current view have acknowledged

the completion (this was explained in the last chapter). This is because if a view change

takes place before an operation is completed at all the replicas in the old view, the new

view may or may not contain any replica that is aware of the operation.

Repeated attempts to complete operations do not imply that the operations are executed

more than once. Duplicate requests for the same operations are filtered out using the

73

timestamp-mid table at each replica, as described in the last chapter. Furthermore the

timestamp-mid table is accurate since it is taken from the replica whose tuple space is used

to initialized the state of the new view. This satisfies our second claim.

We are also interested in whether the algorithm makes progress, that is, whether it

succeeds in forming new views as along as a sufficient number of replicas can communicate.

Of course, it can only make progress provided that failures happen rarely, but this is a

reasonable assumption. To increase the probability of a view change, the algorithm needs

to be tolerant of slow responses and lost messages. For example, suppose a manager waits

only until it hears from enough replicas to form a view even though there are other replicas

that could respond. This would result in those other replicas being excluded from the new

view, which in turn means another view change will occur shortly. If that next view change

also excludes some potential members, that will lead to another view change, and so on.

To avoid such a situation, a manager should use a fairly long timeout while it waits to

hear from all replicas that the "I'm Alive" messages indicate should reply. Similarly, an

underling should use a fairly long timeout before it becomes a manager. In addition, it is

worthwhile to mask lost messages by sending duplicates, so that a lost message will not

trigger another view change.

5.9 Discussion

In concluding this chapter, we discuss a number of approaches to handling crashes and a

possible optimization.

5.9.1 Crashes

In the above discussion, we assumed that after a node crash, a replica recovers with all its

pre-crash state restored. That is, no information is lost during crashes. This subsection

discusses two extant implementations, and gives a reference to a method that can be used

when this assumption does not hold.

An easy solution is to provide stable storage [191 at each replica. Each replica has

some form of nonvolatile storage (for example, disks). The updates to the replica state are

74

recorded on the log in the order they occur. The log is kept in the stable storage. During

a recovery from a crash, the contents of the log are replayed in the order they were stored

to restore the pre-crash replica state.

Although simple, this approach is usually undesirable. In order to make the storage

truly stable, duplicate copies are needed. This makes the writing unacceptably slow. For

example, if stable storage is implemented using two disks, both disks need to be written.

Each update needs to be done sequentially: first it is written to one disk and then that disk

must be read to ensure that the write happened successfully; then the same process must

be repeated on the other disk.

An alternative to the above approach is to supply each replica with a disk and an unin-

terruptible power supply (UPS). Because of the UPS's, replicas can acknowledge operations

as soon as the information resides in main memory. If the replica's node crashes, the UPS

will permit it to write volatile memory to disk before it shuts down.

Oki has discussed a replication scheme that uses only a little nonvolatile or stable storage.

Interested readers can refer to [22][23] for a discussion of this scheme.

5.9.2 Optimization

Our algorithm uses one-and-a-half-phases. During the first phase, the manager sends out

invitations to all other replicas, and the underlings respond to the invitations. The un-

derlings' current viewids and their tuple space copies are piggybacked on the responses.

During the last half phase, the manager tries to form a view and, if one can be formed,

sends a commit message along with the selected most up-to-date tuple space copy to all the

underlings. No responses to the commit messages are necessary.

This scheme is simple, but costly in terms of the amount of information being transmit-

ted and the amount of storage required if the tuple space is large. This is because the entire

tuple space and table are sent on every underling's acceptance message to an invitation,

and the manager has to keep a temporary copy of the tuple space and table in addition to

its local copies. An alternative to the one-and-a-half-phase scheme is a two-phase scheme.

During the first phase, the manager sends the invitation to all other replicas, and the un-

'75

derliL gs respond by sending back their local viewids only. In the second phase, the manager

informs the replica with the highest viewid to distribute its local copy of the tuple space

and table to all the replicas in the new view. If the manager itself has the most recent

viewid, this becomes a one-and-a-half-phase scheme.

Chapter 6

Discussion

In the previous chapters, we described a technique for constructing a highly-available tuple

space that works in a general communications network. The method involves little delay

of workers: a rd waits for only one response, an out does not delay the worker at all,

and an in delays the worker only during the first phase. The protocol was simulated using

Argus [201 on several VAXstations connected by a local area network. Deliberate failures

were generated to simulate the possible failures in a general communications network. The

simulation survived the various failures we were able to construct.

Our work contributes in the following two areas:

* The protocol makes it possible to implement a highly-available tuple space on a com-

munications network where nodes may crash and recover, and the network may crash,

partition, and be repaired. This establishes the foundation for building Linda sys-

tems on a communications network. Our research indicates how fault-tolerance might

be achieved for other parallel systems. Many parallel computations are long lived;

fault-tolerance is particularly important for them. In addition, the other advantages

of distribution (using inexpensive machines over a network and scalability) apply to

any parallel system.

" The protocol described in this thesis is an addition to the general replication schemes

that provide fault-tolerant and highly-available services in distributed systems. It

shows what can be done when the semantics of the operations are taken in account. We

were able tn devise an implementation that outperformed the general voting technique.

76

77

However, as discussed below, our scheme works only because of the semantics of in,

out, and rd; the addition of rdp and inp changed the semantics sufficiently that our

special optimizations can no longer be used.

In the remainder of this chapter, we discuss the relationship between our technique and

other related research, additional Linda operations, and some extensions to our method and

areas for further work.

6.1 Related Work

The only other Linda kernels that approximate a distributed kernel are the S/Net kernel

and the VAX-LAN kernel. We will discuss why they are inappropriate for use in a general

communications network. We will also discuss two other replication approaches that can

be alternatives to our scheme: the voting scheme and the viewstamped replication scheme.

6.1.1 S/Net Kernel

The S/Net kernel is described in detail in [8]. The S/Net consists of several MC-68000's

with local memory, connected by a bus. The operations are executed as follows: executing

out(t) causes tuple t to be broadcast to every node in the network; thus every node stores

a complete copy of the tuple space. Executing in(s) triggers a local search for a matching t.

If one is found, the local kernel attempts to delete t network-wide; if the attempt succeeds,

t is returned to the worker that executed in(s). If the attempt fails, the deleted tuples

are put back and the operation is tried again. An attempt can fail for two reasons: (1)

some other worker has simultaneously attempted to delete t and has succeeded on some

nodes; and (2) some other worker is executing a concurrent out operation and t has not yet

reached all the nodes. If the local search triggered by in(s) turns up no matching tuple, all

newly-arriving tuples are checked until a match occurs, at which point the matching tuple

is deleted and returned as before. Rd works in the same way as in, except that no tuple

deletion is attempted; as soon as a matching tuple is found, it is returned immediately to

the reading worker.

The S/Net kernel assumes reliable broadcast of messages, so it does not tolerate failures

78

of network or nodes. For instance, if an out's request does not reach all nodes, the tuple

space becomes inconsistent; an in can never succeed if one copy of the tuple space becomes

inaccessible. In addition, the S/Net requires that a copy of tuple space be stored on every

node while our scheme does not.

Our protocol performs i as well as the S/Net kernel's protocol on rd, out, and in opera-

tions (assuming that the S/Net executes out operations in the background). Both schemes

rd from one copy and out to all copies. The S/Net kernel executes ins in one phase; our

protocol executes ins in two phases, but the second phase is done in the background to

avoid blocking the program process.

6.1.2 VAX-LAN Kernel

In a VAX-LAN 14], computing nodes are connected by an Ethernet-based local area network.

The VAX-LAN kernel uses the following scheme: out(t) stores t on one of the nodes; in(s)

activates a global search for a match to 8 on all nodes; rd(s) also requires a global search.

In this scheme, out is simple. In(s) causes the template s to be broadcast to all nodes.

Each node searches for matching tuples in its local memory. If a matching tuple is found,

it is deleted from the local memory and shipped to the template-originating node using a

point-to-point protocol; otherwise the template is stored locally for x ticks. All the tuples

arriving within these x ticks are checked, and matching ones are sent off. The template is

thrown away after x ticks. If the template's originating node has not received any tuple for

x ticks, then it broadcasts the template again. If the originating node receives more than

one matching tuple, one of them is chosen, and the rest are stored on some nodes. Rd(s)

is similar.

Since only one copy of each tuple is stored system-wide, the VAX-LAN scheme does not

provide high-availability: if the node owning the tuple t crashes, or a message containing

t in response to an in(s) is lost, then t becomes unavailable or, worse, is lost forever. A

network partition may also make some tuples unavailable.

'Our analysis of performance is based on the amount of messages and delays at protocol level. We are
not able to make comparisons on any real implementation at this writing.

.79

Our scheme performs as well as the VAX-LAN kernel protocol on rd and out operations.

The VAX-LAN performs better on in operations since the program process can continue as

soon as the first response arrives. But the better performance on in operations comes from

the fact that only one copy of each tuple is stored - the reason that VAX-LAN can not be

made highly-available.

6.1.3 Voting

Gifford's Weighted Voting [14] provides a general replication method by dividing a certain

number of votes, n, among replicas. A read operation has to acquire a read quorum of r

votes and a write operation has to acquire a write quorum of w votes. The requirement

that r + w > n and 2w > n ensures that every read quorum intersects every write quorum

and that write quorums intersect, which in turn implies that there is at least one up-to-

date copy in both read and write quorums. The up-to-date copy is identified by the copy's

version number. In addition to the version number, each copy also contains its state and

the number of votes assigned to it. Herlihy [16] extended the above voting scheme to take

the advantage of operation semantics, and thus made the algorithm more efficient.

Our protocol is a special case of the voting scheme where the read quorum is one and

the write quorum is all the replicas. Like Herlihy's scheme, our method utilizes the Linda

operation semantics to achieve better performance: Out operations and the second phase of

in operations are performed in the background, which makes out's appear to be zero-phase,

and in's to be one-phase. This outperforms voting where all write operations need to be

two-phase.

In voting schemes where writes are done to all copies, write operations cannot be per-

formed if a replica is down or inaccessible. This problem was overcome by the invention of

the virtual partition protocol [1][2]. Our view change algorithm is an optimization of this

protocol.

80

6.1.4 Viewstamped Replication

The viewstamped replication scheme is described in [23][22]. It is an integration of a modi-

fied primary copy scheme [5] and the virtual partition algorithm (1]. This method works as

follows. The tuple space is replicated. Among the replicas, there is a primary that executes

workers' operation requests. The updates are propagated to the rest of the replicas, called

backups, in background mode. Whenever a failure is detected, the replicas activate a view

change algorithm similar to ours. A new view is formed if a majority of replicas agree to

join the new view. A new primary is elected when the new view is formed.

To identify the latest state of the new view, viewstamps are used. A viewstamp is

the concatenation of the viewid of the view in which the operation is executed and the

timestamp of the operation. The viewstamps help the view manager to identify the replica

that has the most up-to-date state.

The viewstamped replication scheme is efficient (the workers only have to talk to one

replica in the normal case), fault-tolerant (it tolerates common failures from general parti-

tionable networks), and highly-available (the data are replicated). But the current scheme

is defined to work only when workers' computations run as atomic transactions [191. How

to adopt the viewstamp replication scheme to Linda is a matter for future research.

6.2 Additional Linda Operations

As mentioned in Chapter 2, additional operations have been proposed for Linda. A rdp

does not wait for a tuple when none matches; instead it signals an exception. Similarly, an

inp does not wait when there is no match, but instead signals an exception.

These operations are not compatible with our implementation. Our current scheme

allows a rd to observe the results of a partially completed out (that is, an out that has

been completed at only some of the replicas in the current view). The following example

illustrates the difficulty:

"81

worker to worker z

out("x", 3)
rd("k ", formal u) % u = 3
rdp("x", formal v) % signals an exception

When worker z reads 3 into variable u, this implies that the out has happened. Now

suppose there is a view change, and the effects of the out Lre not part of the initial state

of the new view. Then the rdp of z occurs and observes that the out has not yet occurred.

Note that this problem will not occur if z's second operation is a rd, since the rd will simply

wait until the effect of the out can be observed.

Our implementation could support these operations by having rd (and rdp) read all

replicas in the current view, and only return a tuple if it is in the intersection of the tuples

returned by the replicas; if the intersection is empty rd would try again and rdp would

signal. However, the result of this change is a slower implementation than the one proposed.

The S/Net kernel also does not support these operations. The problem here comes up

in the interaction of in with rdp:

worker w worker z

in("x", formal v) rdp("x", formal v) % signals
rdp('x", formal u) % returns 3

Here w's in is running in parallel with z's rdp's. Suppose that ("x", 3) is in the tuple space

before w's in. The first rdp observes the situation when w is attempting to remove the

tuple, and this tuple has been removed at z's node. However, suppose the in fails and the

tuple is put back. In this case the second rdp observes the result of putting the tuple back.

The VAX-LAN kernel could support rdp and inp, but, as mentioned earlier, this ap-

proach cannot be made highly-available.

82

6.3 Extensions of Our Scheme

In describing our system model in chapter 3, we assumed that replication is uniform- every

tuple is replicated onto all replicas. In this section, we will show that our protocol works

even when the tuple space is not replicated uniformly. We will also describe a proposal for

tolerating workers' failures.

6.3.1 Nonuniform Replication

There are two problems with keeping the entire tuple space at one set of replicas. First, if

the tuple space is large, then each node where a replica resides must provide a large amount

of storage. Second, if accesses to the tuple space are frequent, the replicas' nodes may

become overloaded and slow down workers more than is acceptable. These problems can

be overcome by partitioning the tuple space among different sets of replicas. The obvious

way to distribute the tuples is by logical name. For example, all tuples with logical name

"x" will be in set S and all those with logical name "y" will be in set T.

Each set of replicas operates completely independently from the other sets. Each set

contains its own replicas. For example there might be two sets:

S = {frl,...,s}
T - {re,...,rio}

Some of these replicas might reside at the same node, for example, r, and r7 might both be

at node N, but more likely the nodes containing the replicas would be disjoint. The reason

for this is that replica sets are useful, as mentioned above, for alleviating storage problems

at nodes and for reducing contention. These benefits would not be obtained if replicas in

different sets were located at the same node.

When a worker performs an operation, it sends the request to the replica set that

contains information about that tuple or template. Obviously, there must be a mechanism

to determine what set to use. This could be done either statically or dynamically. An

example of a static mechanism is a hash function that maps logical names into sets. An

example of a dynamic mechanism is a (replicated, highly-available) location server that

83

stores the mapping; workers would maintain a cache containing the mapping for recently

used tuples and consult the server only when there is a cache miss or when the information

in the cache is found to be out of date. Implementations of location servers are discussed

in [12][15][17][21].

The portion of a worker's code that interacts with replicas would need to take the

multiple sets into account. Operations concerning the same set would be done in order

just as described in Chapter 3. Operations that make use of different sets can be done

in the background in parallel, except that we still need the same synchronization we have

now, namely that prior in2's must complete before an out can start. For example, suppose

logical tuple "x" is stored at set S and logical tuple "y" is stored at set T. Consider first

in("x", ..
~~in("y",.)

rd("x", ..
rd("y",.)

The rd's of "x" and "y" will not observe the old tuples removed by the respective in's

because operations are done in order at each set. Thus at S we do in("x") before the

rd("x"), and at T we do in("y") before the rd("y"). Now consider

in("y", ...)

out("x", ...)

The start of the out will be delayed until both in("x") and in("y") are completed. This

will ensure that some other worker that observes the effect of the out will not subsequently

be able to observe the tuples removed by either in("x") or in("y").

View changes occur independently at each set, using the protocol described in Chapter

5.

6.3.2 Workers' Failures

This thesis proposed a scheme to build a fault-tolerant kernel that makes the Linda tuple

space highly-available. But even with such a kernel, Linda programs are not completely

84

fault-tolerant since the failure of a worker can cause problems. In particular, if a worker

crashes after starting an inl, but before completing the corresponding in2, some tuples

may be locked forever. This section proposes a way to tolerate workers' failures.

What we would like is to release locks held by crashed workers. However, as mentioned

earlier, it is not possible in general to distinguish a node crash from a partition. Thus,

the absence of messages from a worker may mean either that it is crashed, or it cannot

communicate because of a partition. Releasing the worker's locks in the case of a partition

would be a problem, because the worker is still running and therefore depends on its locks.

We can solve this problem by forcing a worker that cannot communicate because of

a partition to crash. The idea is for replicas to maintain two views (and viewids): the

replica-view as discussed earlier in the thesis, and also a worker-view. Initially all workers

are in the worker-view. Replicas send probe messages to workers and workers respond to

these messages. If a worker does not respond to probes after a sufficient number of tries, the

replicas carry out a worker view change, during which all replicas in the current replicaview

agree on a new worker-view and worker-viewid. As part of the view change, an initial state

is selected for the new view as usual, except that all locks held by the excluded worker are

released. As is the case in any view change, a majority of replicas must participate in the

view change.

Whenever a replica receives an operations request from a worker, it checks to be sure the

worker is in the current worker-view. If not, the request is rejected, and the worker is sent

a "you must crash" message. When a worker receives such a message it stops processing

immediately.

Given this semantics, fault-tolerant programs can be written in Linda. Figure 6.1 shows

the form of such a program. The idea here is that the workers collaborate to carry out

task-numbers of tasks; information about these tasks is contained in the tasks array in the

tuple space. To keep track of what workers are doing, we use the status array in tuple space.

Status[i] = 0 means that task i has not yet been worked on; Atatus,1 < 0 means that task i

has been completed; status~i] > 0 means that task i is being worked on. In this latter case

the value of status i] tells how many times workers have attempted to perform task i.

85

cnt: array[record[round, time: intl] % a local array at each worker
% initially cnt[iJ = <0, 0> for all i

while true do
done: bool := true
for i in task-numbers do

in("status", i, formal v)
if v < 0 then

out("status", i, v)

continue % to the next iteration of the for loop
elseif v = 0 or (cnt[i].round = v and cnt(il.time < current-time) then

out("status", i, v+1)
% do tasks[i] here ...
in("status", i, formal v)
out("status", i, -1)
continue

elseif cnt[i].round ,s= v then cnt[i] := <v, current-time + 6>
end % if
done := false

end % for loop
if done then

ret urn % only get here when status/i] < 0 for all i
end % if

end % while

Figure 6.1: A Fault Tolerant Worker

86

A worker cycles through the status array looking for a task to be done. Such a task

is either one that has never been attempted, or one that has been attempted by another

worker in the past but not completed within a reasonable delay 6. When it first discovers a

task being worked on by another worker, it records this fact in its local cnt array, together

with an estimation of when that worker should complete. If it later discovers that the task

is still being worked on by that worker, but the time estimate has been exceeded, it takes

on the task itself. In this case it stores a larger round number in the status array to prevent

other workers from also redoing the task at this point. (The estimated time of completion

could be stored in the status array provided we assume that the clocks of the workers are

loosely synchronized. If workers do not have clocks, they can keep track of how many times

they have noticed that a particular round for task i is occurring, and take on the task

themselves when this number reaches some maximum.)

Note that there is an assumption here: it is all right to do a computation more than once.

This is sometime undesirable. If the computation is not repeatable, additional techniques

are needed that allow computations to run as atomic actions [11]. Adding atomic actions

to Linda requires further research.

References

[1] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. An Efficient, Fault-Tolerant Proto-
cal for Replicated Data Management. In Proceedings of the 4th ACM SIGACT/SIGMOD
Conference on Principles of Database Systems, ACM, 1985.

[2] Amr El Abbadi and Sam Toueg. Maintaining Availability in Partitioned Replicated
Databases. In Proceedings of the 5th ACM SIGACT/SIGMOD Conference on Principles of
Data Base Systems, ACM, March 1986.

[3] S. R. Ahuja, N. J. Carriero, D. Gelernter, and V. Krishnaswamy. Progress Towards a
Linda Machine. In Proceedings of International Conference on Computer Design, IEEE,
1986.

[4] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and Friends. IEEE Com-
puter, 26-34, August 1986.

[5] Peter A. Alsberg, Geneva H. Belford, John D. Day, and Enrique Grapa. Multi-Copy
Resiliency Techniques. CAC Document 202, Center for Advanced Computation, University
of Illinois, Urbana, Illinois, May 1986.

[6] Philip A. Bernstein and Nathan Goodman. The Failure and Recovery Problem for Repli-
cated Databases. In Second ACM Symposium on the Principles of Distributed Computing,
pages 114-122, August 1983.

[7] Robert Bjornson, Nicholas Carriero, David Gelernter, and Jerrold Leichter. Linda, the
Portable Parallel. Technical Report, Department of Computer Science, Yale University,
February 1987.

[8] Nicholas Carriero and David Gelernter. The S/Net's Linda Kernel. ACM Transacti.
on Computer Systems, 4(2):111-129, May 1986.

[9] Nicholas J. Carriero. Implementation of Thple Space Machines. YALEU/DCS/TR 567,
Yale University, Department of Computer Science, December 1987.

[10] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Fault-Tolerant Atomic Broadcasts:
from Simple Message Diffusion to Byzantine Agreement. Tech. Report, IBM Research San
Jose, 1984.

87

88

[11] Kapal P. Eswaran, James N. Gr,-y, Raymond A. Lorie, and Irving L. Traiger. The
Notion of Consistency and Predicate Locks in a Database System. Communications of the
ACM, 19(11):624-633, November 1976.

[12) Robert J. Fowler. Decentralized Object Finding Using Forwarding Addresses. Techni-
cal Report 85-12-1, University of Washington, Department of Computer Science, Seattle,
Washington, December 1985.

[131 David Gelernter, Nicholas Carriero, Sarat Chandran, and Silva Chang. Parallel Pro-
gramming in Linda. In Proceedings of International Conference on Parallel Processing,
IEEE, 1985.

[14] David K. Gifford. Weighted Voting for Replicated Data. In Proceedings of the Seventh
Symposium on Operating Systems Principles, ACM, December 1979.

[15] Cecilia Henderson. "Locating Migratory Objects in an Internet". 1982. Master's
thesis, MIT Laboratory for Computer Science. Available as Computation Structures Group
Memo 224, MIT LCS.

[161 Maurice Peter Herlihy. Replication Methods for Abstract Data Types. Technical Re-
port 319, Laboratory For Computer Science, Massachusetts Institute of Technology, May
1984.

[171 Deborah J. Hwang. Constructing a Highly-Available Location Service for a Distributed
Environment. Master's thesis, M.I.T. Laboratory for Computer Science, November 1987.
Master's thesis.

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Prob-
lem. A CM Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

[19] B. W. Lampson. Atomic Transactions, pages 246-265. Volume 105 of Lecture Notes
in Computer Science, Springer-Verlag, New York, N.Y., 1981. This is a revised version of
Lampson and Stvirgis's unpublished Crash Recovery in a Distributed Data Storage System.

[201 Barbara Liskov. Overview of the Argus Language and System. Programming Method-
ology Group Memo 40, Laboratory For Computer Science, Massachusetts Institute of Tech-
nology, February 1984.

[21] Sape Mullender and Paul Vitanyi. "Distributed Match-Making for Processes in Com-
puter Networks-Preliminary Version". In Proceedings of the Fourth ACM Symposium on
the Principles of Distributed Computing, August 1985. Held at Minaki, Ontario, Canada.
Sponsored by ACM.

[221 Brian M. Oki. Viewstamped Replication for Highly Available Distributed Systems. PhD
thesis, Massachusetts Institute of Technology, May 1988.

89

[23] Brian M. Old and Barbara H. Liskov. Viewstamped Replication: A general Primary
Copy Method to Support Highly-Available Distributed Systems. In Proceedings of the 7th
ACM Symposium on Principles of Distributed Computing, ACM, August 1988.

[24] Fred B. Schneider. Fail-Stop Processors. In Digest of Papers from Spring CompCon
'83 26th IEEE Computer Society International Conference, pages 66-70, IEEE, March 1983.

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

